

1 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

[MS-BINXML-Diff]:

SQL Server Binary XML Structure

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 Major Initial Availability.

4/25/2008 0.2 Editorial Changed language and formatting in the technical content.

6/27/2008 1.0 Editorial Changed language and formatting in the technical content.

12/12/2008 1.01 Editorial Changed language and formatting in the technical content.

8/7/2009 1.1 Minor Clarified the meaning of the technical content.

11/6/2009 1.1.2 Editorial Changed language and formatting in the technical content.

3/5/2010 1.2 Minor Clarified the meaning of the technical content.

4/21/2010 1.2.1 Editorial Changed language and formatting in the technical content.

6/4/2010 1.2.2 Editorial Changed language and formatting in the technical content.

9/3/2010 1.2.2 None
No changes to the meaning, language, or formatting of the
technical content.

2/9/2011 1.2.2 None
No changes to the meaning, language, or formatting of the
technical content.

7/7/2011 1.2.2 None
No changes to the meaning, language, or formatting of the
technical content.

11/3/2011 1.2.2 None
No changes to the meaning, language, or formatting of the
technical content.

1/19/2012 1.3.2 Minor Clarified the meaning of the technical content.

2/23/2012 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

3/27/2012 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

5/24/2012 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

6/29/2012 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2012 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

10/23/2012 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

3/26/2013 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

6/11/2013 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

Date
Revision
History

Revision
Class Comments

8/8/2013 1.3.2 None
No changes to the meaning, language, or formatting of the
technical content.

12/5/2013 2.0 Major Updated and revised the technical content.

2/11/2014 3.0 Major Updated and revised the technical content.

5/20/2014 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/10/2016 4.0 Major Significantly changed the technical content.

8/16/2017 5.0 Major Significantly changed the technical content.

10/16/2019 6.0 Major Significantly changed the technical content.

11/1/2022 7.0 Major Significantly changed the technical content.

4 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 (Updated Section) Normative References ... 7
1.2.2 (Updated Section) Informative References ... 7

1.3 Overview .. 8
1.4 Relationship to Protocols and Other Structures .. 8
1.5 Applicability Statement ... 8
1.6 Versioning and Localization ... 8
1.7 Vendor-Extensible Fields ... 8

2 (Updated Section) Structures .. 9
2.1 XML Structures .. 12

2.1.1 Document Root Level .. 12
2.1.2 XML Declaration ... 12
2.1.3 Document Type Declaration ... 12
2.1.4 Comments and Processing Instructions.. 13
2.1.5 Content ... 13
2.1.6 Elements and Attributes .. 13
2.1.7 Namespace Declarations .. 14
2.1.8 CDATA Sections .. 14
2.1.9 Nested Documents .. 15
2.1.10 Extensions ... 15

2.2 Names .. 15
2.2.1 Name Definition.. 15
2.2.2 (Updated Section) Name Reference... 16
2.2.3 QName Definition ... 16
2.2.4 QName Reference ... 16

2.3 Atomic values .. 16
2.3.1 Integral Numeric Types ... 16
2.3.2 Multi-byte Integers ... 17
2.3.3 Single Precision Floating Number .. 17
2.3.4 Double Precision Floating Number ... 17
2.3.5 Decimal Number ... 17
2.3.6 Money ... 18
2.3.7 Small Money .. 18
2.3.8 Unicode Encoded Text ... 18
2.3.9 Code Page Encoded Text ... 18
2.3.10 Boolean ... 19
2.3.11 XSD Date .. 19
2.3.12 XSD DateTime .. 19
2.3.13 (Updated Section) XSD Time .. 20
2.3.14 (Updated Section) SQL DateTime and SmallDateTime 20
2.3.15 Uuid .. 21
2.3.16 Base64 .. 21
2.3.17 BinHex .. 21
2.3.18 Binary ... 22
2.3.19 XSD QName ... 22

2.4 Atomic Values in Version 2 .. 22
2.4.1 (Updated Section) Date ... 22
2.4.2 DateTime2 ... 23
2.4.3 DateTimeOffset .. 23

3 Structure Examples ... 24
3.1 Document ... 24

5 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

3.2 Names .. 24

4 Security Considerations ... 26

5 (Updated Section) Appendix A: Product Behavior.. 27

6 Change Tracking .. 30

7 Index ... 31

6 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

1 Introduction

The Microsoft SQL Server Binary XML structure is a format that is used to encode the text form of an
XML document into an equivalent binary form, which can be parsed and generated more efficiently.
The format provides full fidelity with the original XML documents.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary

This document uses the following terms:

code page: An ordered set of characters of a specific script in which a numerical index (code-point

value) is associated with each character. Code pages are a means of providing support for
character sets and keyboard layouts used in different countries. Devices such as the display and
keyboard can be configured to use a specific code page and to switch from one code page (such

as the United States) to another (such as Portugal) at the user's request.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

parser: Any application that reads a Binary XML formatted stream and extracts information out of

it. Parsers are also referred to as readers, processors or consumers.

stream: A sequence of bytes written to a file on the target file system. Every file stored on a
volume that uses the file system contains at least one stream, which is normally used to store
the primary contents of the file. Additional streams within the file can be used to store file
attributes, application parameters, or other information specific to that file. Every file has a
default data stream, which is unnamed by default. That data stream, and any other data stream
associated with a file, can optionally be named.

Unicode: A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):

Generic Syntax [RFC3986].

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not

imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must

be used for generating the UUID.

UTF-16: A standard for encoding Unicode characters, defined in the Unicode standard, in which the
most commonly used characters are defined as double-byte characters. Unless specified
otherwise, this term refers to the UTF-16 encoding form specified in [UNICODE5.0.0/2007]
section 3.9.

7 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

UTF-16LE (Unicode Transformation Format, 16-bits, little-endian): The encoding scheme
specified in [UNICODE5.0.0/2007] section 2.6 for encoding Unicode characters as a sequence of

16-bit codes, each encoded as two 8-bit bytes with the least-significant byte first.

writer: Any application that writes Binary XML format. Writers are also referred to as producers.

XML: The Extensible Markup Language, as described in [XML1.0].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MSDN-CP] Microsoft Corporation, "Code Page Identifiers", https://docslearn.microsoft.com/en-
us/windows/desktop/Intl/code-page-identifiers

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, httphttps://www.rfc-editor.org/rfc/rfc2119.txthtml

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

[XML10/3] Bray, T., Paoli, J., Sperberg-McQueen, C.M., et al., Eds., "Extensible Markup Language
(XML) 1.0 (Third Edition)", W3C Recommendation, February 2004, http://www.w3.org/TR/2004/REC-
xml-20040204/

[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "Namespaces in XML 1.0 (Third Edition)",
W3C Recommendation, December 2009, httphttps://www.w3.org/TR/2009/REC-xml-names-
20091208/

1.2.2 (Updated Section) Informative References

[ISO8601] ISO, "Data elements and interchange formats - Information interchange - Representation
of dates and times", ISO 8601:2004, December 2004,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40874

Note There is a charge to download the specification.

[MS-SSAS] Microsoft Corporation, "SQL Server Analysis Services Protocol".

[MS-TDS] Microsoft Corporation, "Tabular Data Stream Protocol".

[RFC3548] Josefsson, S., Ed., "The Base16, Base32, and Base64 Data Encodings", RFC 3548, July
2003, http://www.rfc-editor.org/rfc/rfc3548.txt

8 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part
1: Structures", W3C Recommendation, May 2001, httphttps://www.w3.org/TR/2001/REC-xmlschema-

1-20010502/

[XMLSCHEMA2] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes", W3C
Recommendation, May 2001, httphttps://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

1.3 Overview

Binary XML is used to encode the text form of an XML document into an equivalent binary form which
can be parsed and generated more efficiently. The format employs the following techniques to achieve
this efficiency:

▪ Values (for example, attribute values or text nodes) are stored in a binary format, which means
that a parser or a writer is not required to convert the values to and from string representations.

▪ XML element and attribute names are declared once and they are later referenced by numeric

identifiers. This is in contrast to the text representation of XML which repeats element and

attribute names wherever they are used in an XML document.

1.4 Relationship to Protocols and Other Structures

An XML document encoded in the binary XML format is a stream of bytes which can be transmitted by
various network protocols. Such network protocols can choose to wrap the binary XML data within
other byte streams. The specification of such network protocols and the formats they use to transmit
data (including binary XML) is not part of this document.

Binary XML is used by [MS-SSAS] and [MS-TDS].

1.5 Applicability Statement

Binary XML is suitable for use when it is important to minimize the cost of producing or consuming

XML data and all consumers of the XML can agree on this format. It is not appropriate for scenarios
where interoperability with consumers using plain-text XML or other binary XML formats is required.

Binary XML can represent any XML document as defined by [XML10/3] including support for
namespaces as defined in [XMLNS].

1.6 Versioning and Localization

The Binary XML format has two versions: Version 1 and Version 2, as defined in Structures (section
2).

Binary XML supports a fixed set of features for each version. The version number in the header of a
binary XML document specifies the version of the binary XML format it uses. Document Root Level
(section 2.1.1) describes the binary XML document header in detail.

1.7 Vendor-Extensible Fields

Binary XML supports extension tokens, which allow applications to embed application-specific
information into the data stream. The format does not specify how to process these values or how to
distinguish values from multiple vendors or layers. It also does not provide any capability to negotiate
the set of extensions in use. Parsers of the format MUST ignore extension tokens which they do not
expect or do not understand.

9 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

2 (Updated Section) Structures

The structures described in the following sections are applicable to Binary XML Versions 1 and 2,
unless otherwise specified.

The following is an Augmented Backus-Naur Form (ABNF) description of the Binary XML format. ABNF
is specified in [RFC5234].], with the addition of "%x00" as a valid value.

In accordance with section 2.4 of that RFC, this description assumes no external encoding because the

terminal values of this grammar are bytes.

 document = signature version encoding [xmldecl] *misc
 [doctypedecl *misc] content
 signature = %xDF %xFF
 version = %x01 / %x02 ; x01 means Version 1, x02 means Version 2
 encoding = %xB0 %x04 ; 1200 little-endian = UTF-16LE
 xmldecl = XMLDECL-TOKEN textdata [ENCODING-TOKEN textdata]
 standalone
 misc = comment / pi / metadata
 doctypedecl = DOCTYPEDECL-TOKEN textdata [SYSTEM-TOKEN textdata]
 [PUBLIC-TOKEN textdata] [SUBSET-TOKEN textdata]
 content = *(element / cdsect / pi / comment / atomicvalue /
 metadata / nestedbinaryxml)
 textdata = length32 *(byte byte) ; length is in UTF-16LE
 characters
 textdata64 = length64 *(byte byte) ; length is in UTF-16LE
 characters
 standalone = %x00 / ; the standalone attribute was not specified
 %x01 / ; yes
 %x02 ; no
 comment = COMMENT-TOKEN textdata
 pi = PI-TOKEN name textdata
 metadata = namedef / qnamedef / extension /
 FLUSH-DEFINED-NAME-TOKENS
 namedef = NAMEDEF-TOKEN textdata
 name = mb32 ; 0 is reserved for empty name/zero length string
 qnamedef = QNAMEDEF-TOKEN namespaceuri prefix localname
 qname = mb32 ; index to the (NsUri, Prefix and LocalName) table
 ; assigned starting from 1, 0 is invalid
 extension = EXTN-TOKEN length32 *byte
 namespaceuri = name
 prefix = name
 localname = name
 element = ELEMENT-TOKEN qname [1*attribute ENDATTRIBUTES-TOKEN]
 content ENDELEMENT-TOKEN
 cdsect = 1*(CDATA-TOKEN textdata) CDATAEND-TOKEN
 nestedbinaryxml = NEST-TOKEN document ENDNEST-TOKEN
 attribute = *metadata ATTRIBUTE-TOKEN qname
 *(metadata / atomicvalue)
 atomicvalue = (SQL-BIT byte) /
 (SQL-TINYINT byte) /
 (SQL-SMALLINT 2byte) /
 (SQL-INT 4byte) /
 (SQL-BIGINT 8byte) /
 (SQL-REAL 4byte) /
 (SQL-FLOAT 8byte) /
 (SQL-MONEY 8byte) /
 (SQL-SMALLMONEY 4byte) /
 (SQL-DATETIME 8byte) /
 (SQL-SMALLDATETIME 4byte) /
 (SQL-DECIMAL decimal) /
 (SQL-NUMERIC decimal) /
 (SQL-UUID 16byte) /
 (SQL-VARBINARY blob64) /
 (SQL-BINARY blob) /

10 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

 (SQL-IMAGE blob64) /
 (SQL-CHAR codepagetext) /
 (SQL-VARCHAR codepagetext64) /
 (SQL-TEXT codepagetext64) /
 (SQL-NVARCHAR textdata64) /
 (SQL-NCHAR textdata) /
 (SQL-NTEXT textdata64) /
 (SQL-UDT blob) /
 (XSD-BOOLEAN byte) /
 (XSD-TIME 8byte) /
 (XSD-DATETIME 8byte) /
 (XSD-DATE 8byte) /
 (XSD-BINHEX blob) /
 (XSD-BASE64 blob) /
 (XSD-DECIMAL decimal) /
 (XSD-BYTE byte) /
 (XSD-UNSIGNEDSHORT 2byte) /
 (XSD-UNSIGNEDINT 4byte) /
 (XSD-UNSIGNEDLONG 8byte) /
 (XSD-QNAME qname) /
 (XSD-DATE2 sqldate) /
 (XSD-DATETIME2 sqldatetime2) /
 (XSD-TIME2 sqldatetime2) /
 (XSD-DATEOFFSET sqldatetimeoffset) /
 (XSD-DATETIMEOFFSET sqldatetimeoffset) /
 (XSD-TIMEOFFSET sqldatetimeoffset)
 byte = OCTET ; 8 bits stored as one byte
 lowbyte = %x00-7F
 highbyte = %x80-FF
 mb32 = *4highbyte lowbyte ; unsigned integer in little-endian multi-byte encoding
 little-endian
 multi-byte encoding
 mb64 = *9highbyte lowbyte ; unsigned integer in little-endian multi-byte encoding
 sqldate = 3byte ; little-endian 3 byte integer
 sqltime = (%x00-02 3byte) / (%x03-04 4byte) / (%x05-07 5byte)
 sqltimezone = 2byte ; little-endian 2 byte integer
 sqldatetime2 = sqltime sqldate
 sqldatetimeoffset = sqltime sqldate sqltimezone
 decimaldata = 4byte / 8byte / 12byte / 16byte
 sign = %x00 / %x01 ; 1 is positive, 0 is negative
 decimal = length32 byte sign decimaldata
 length32 = mb32
 length64 = mb64
 blob = length32 *byte
 blob64 = length64 *byte
 codepage = 4byte
 codepagetext = length32 codepage *byte
 codepagetext64 = length64 codepage *byte
 SQL-SMALLINT = %x01
 SQL-INT = %x02
 SQL-REAL = %x03
 SQL-FLOAT = %x04
 SQL-MONEY = %x05
 SQL-BIT = %x06
 SQL-TINYINT = %x07
 SQL-BIGINT = %x08
 SQL-UUID = %x09
 SQL-DECIMAL = %x0A
 SQL-NUMERIC = %x0B
 SQL-BINARY = %x0C ; Binary data
 SQL-CHAR = %x0D ; Codepage encoded string
 SQL-NCHAR = %x0E ; Unicode encoded string
 SQL-VARBINARY = %x0F ; Binary data
 SQL-VARCHAR = %x10 ; Codepage encoded string
 SQL-NVARCHAR = %x11 ; Unicode encoded string
 SQL-DATETIME = %x12
 SQL-SMALLDATETIME = %x13
 SQL-SMALLMONEY = %x14
 SQL-TEXT = %x16 ; Codepage encoded string
 SQL-IMAGE = %x17 ; Binary data

11 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

 SQL-NTEXT = %x18 ; Unicode encoded string
 SQL-UDT = %x1B ; Binary data
 XSD-TIMEOFFSET = %x7A
 XSD-DATETIMEOFFSET = %x7B
 XSD-DATEOFFSET = %x7C
 XSD-TIME2 = %x7D
 XSD-DATETIME2 = %x7E
 XSD-DATE2 = %x7F
 XSD-TIME = %x81
 XSD-DATETIME = %x82
 XSD-DATE = %x83
 XSD-BINHEX = %x84
 XSD-BASE64 = %x85
 XSD-BOOLEAN = %x86
 XSD-DECIMAL = %x87
 XSD-BYTE = %x88
 XSD-UNSIGNEDSHORT = %x89
 XSD-UNSIGNEDINT = %x8A
 XSD-UNSIGNEDLONG = %x8B
 XSD-QNAME = %x8C
 FLUSH-DEFINED-NAME-TOKENS = %xE9
 EXTN-TOKEN = %xEA
 ENDNEST-TOKEN = %xEB
 NEST-TOKEN = %xEC
 QNAMEDEF-TOKEN = %xEF
 NAMEDEF-TOKEN = %xF0
 CDATAEND-TOKEN = %xF1
 CDATA-TOKEN = %xF2
 COMMENT-TOKEN = %xF3
 PI-TOKEN = %xF4
 ENDATTRIBUTES-TOKEN = %xF5
 ATTRIBUTE-TOKEN = %xF6
 ENDELEMENT-TOKEN = %xF7
 ELEMENT-TOKEN = %xF8
 SUBSET-TOKEN = %xF9
 PUBLIC-TOKEN = %xFA
 SYSTEM-TOKEN = %xFB
 DOCTYPEDECL-TOKEN = %xFC
 ENCODING-TOKEN = %xFD
 XMLDECL-TOKEN = %xFE

Note that the values of constant tokens (for example SQL-SMALLINT) are not sequential. The values
which are not defined in the above grammar are not used by Binary XML Versions 1 and 2.

XML documents encoded in Binary XML MUST conform to the grammar of the document.

The byte order of the entire Binary XML document is defined by the application which uses it. The
order in which Binary XML data is stored or transferred is not part of this document. Thus any
reference to byte order (for example, little-endian) in this document is relative to the order of the
entire Binary XML document.

A parser of Binary XML MUST fail if it encounters data which does not follow the grammar or the
conformance rules specified in this section.

A writer of Binary XML MUST fail if it is requested to write data which would break any of the rules in

the grammar or the conformance rules specified in this section.

Binary XML does not impose any restrictions other than those implied or explicitly stated in this
section. An implementation of a parser or writer MAY<1> impose additional restrictions. Examples of
such restrictions can be derived from limitations on available resources or of a targeted system.

Dates and times in this section are specified by using the notation from [ISO8601]. Dates and times
are specified by using the proleptic Gregorian calendar.

12 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

2.1 XML Structures

The following sections describe the Binary XML representation of basic XML structures.

2.1.1 Document Root Level

The root level of each document contains the header (for example, signature, version, and
declaration) followed by the content of the document.

 signature = %xDF %xFF
 version = %x01 / %x02
 document = signature version encoding [xmldecl] *misc
 [doctypedecl *misc] content
 misc = comment / pi / metadata

The document MUST start with a 2-byte signature (0xDF, 0xFF) followed by a 1-byte version, which
MUST be either 1 or 2. A parser MAY<2> choose to support version value 0 and treat it as Version 1.

It MUST be followed by 2 bytes that specify the document encoding code page. In Versions 1 and 2
this value MUST be the UTF-16 code page (0x04B0 or 1200 in decimal).

2.1.2 XML Declaration

The XML declaration token can be used to preserve the XML declaration specified in the original XML
document when encoding it in Binary XML.

 xmldecl = XMLDECL-TOKEN textdata [ENCODING-TOKEN textdata]
 standalone

 standalone = %x00 / ; standalone attribute was not specified
 %x01 / ; yes
 %x02 ; no

XML declaration is included only to preserve the information in text XML documents. The contents of
the XML declaration in Binary XML map to the XML declaration in the original text document as
follows:

▪ The first textdata value MUST contain the content of the version attribute.

▪ The textdata following the ENCODING-TOKEN MUST contain the value of the encoding
attribute.

▪ The standalone token MUST store the value of the standalone attribute.

2.1.3 Document Type Declaration

The Document Type Declaration (DTD) token can be used to preserve the information from the
DOCTYPE tag specified in the original XML document when encoding it in Binary XML.

 doctypedecl = DOCTYPEDECL-TOKEN textdata [SYSTEM-TOKEN textdata]
 [PUBLIC-TOKEN textdata] [SUBSET-TOKEN textdata]

DTD is included only to preserve the information in text XML documents. The contents of DTD in
Binary XML map to DTD in the original text document as follows:

▪ The first textdata MUST contain the name of the DOCTYPE declaration.

13 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

▪ The textdata following the SYSTEM-TOKEN MUST contain the SYSTEM ID.

▪ The textdata following the PUBLIC-TOKEN MUST contain the PUBLIC ID.

▪ The textdata following the SUBSET-TOKEN MUST contain the internal DTD subset.

2.1.4 Comments and Processing Instructions

Comments and processing instructions can be used to preserve comments and processing instructions
specified in the original XML document when encoding it in Binary XML.

 comment = COMMENT-TOKEN textdata
 pi = PI-TOKEN name textdata

Comments and processing instructions are included only to preserve the information in text XML

documents. The contents of comments and processing instructions in Binary XML map to comments
and processing instruction in the original text document as follows:

▪ The textdata following the COMMENT-TOKEN MUST contain the value of the comment.

▪ The name following the PI-TOKEN MUST contain the target of the processing instruction.

▪ The textdata following the name MUST contain the data of the processing instruction.

2.1.5 Content

Each document can have content that can consist of any number of elements or values interleaved
with metadata.

 content = *(element / cdsect / pi / comment / atomicvalue / metadata /
 nestedbinaryxml)
 metadata = 1*(namedef / qnamedef / extension /
 FLUSH-DEFINED-NAME-TOKENS)

Note that Binary XML allows more than one element at the document root level. However, a parser of
Binary XML MAY<3> choose to enforce the XML conformance rules and not allow atomic values,

CDATA sections, and more than one element at the document root level.

2.1.6 Elements and Attributes

This section describes Binary XML representation of XML elements and attributes.

 element = ELEMENT-TOKEN qname [1*attribute ENDATTRIBUTES-TOKEN]
 content ENDELEMENT-TOKEN
 attribute = *metadata ATTRIBUTE-TOKEN qname
 *(metadata / atomicvalue)

An element is defined by a qname token followed by an optional sequence of attributes. Attributes
MUST be followed by an ENDATTRIBUTES-TOKEN to mark the start of an element's content. The
ENDELEMENT-TOKEN specifies the end of the current element.

The value of an attribute is optional. If no value is specified, it defaults to an empty string. A parser
MUST be able to accept inputs which have zero or one atomic value after ATTRIBUTE-TOKEN. A
parser MAY<4> choose to also accept inputs which have more than one atomic value after
ATTRIBUTE-TOKEN.

14 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

The qname token of elements and attributes can contain a prefix to a namespace Uniform Resource
Identifier (URI) mapping that is not explicitly declared by an 'xmlns' attribute. Prefix to namespace

URI mappings MUST conform to [XMLNS]. This includes but is not limited to the following restrictions:

▪ A prefix MUST NOT be mapped to two different namespaces within one element

▪ A prefix MUST NOT be mapped to an empty namespace

▪ An empty prefix MUST NOT be mapped to a non-empty namespace used on an attribute

For better compatibility, a parser of Binary XML MAY<5> choose to add the missing xmlns
declarations when presenting data to an application.

2.1.7 Namespace Declarations

XML namespace declarations are transported as attributes. The local name and namespace Uniform
Resource Identifier (URI) tokens of all namespace declaration attributes MUST be 0 (empty string). A
parser SHOULD report such attributes as having a namespace URI of

http://www.w3.org/2000/xmlns/, but it MAY<6> choose to report it as an empty URI. If a namespace
declaration is to define a default namespace (empty prefix), the prefix token MUST be defined as

"xmlns". If a namespace declaration is to define a non-empty prefix, the prefix token MUST be defined
as a string starting with "xmlns:" followed by the new prefix being declared.

For example a namespace declaration of xmlns:p="ns" is serialized with these properties:

 Local name ""
 URI ""
 Prefix "xmlns:p"
 Value "ns"

A default namespace declaration of xmlns="ns" is serialized with these properties:

 Local name ""
 URI ""
 Prefix "xmlns"
 Value "ns"

A non-empty prefix MUST NOT be mapped to an empty namespace URI.

The value of a namespace declaration attribute MUST consist of only zero or one atomic value. A

parser MUST accept SQL-NVARCHAR, SQL-NCHAR and SQL-NTEXT as the value of a namespace
declaration attribute. A parser MAY<7> accept other atomic value types as the value of a namespace
declaration attribute, in which case it MUST convert its value to a Unicode string.

2.1.8 CDATA Sections

CDATA sections are used in text XML documents to simplify the storing of code or markup sections.

The CDATA token can be used to preserve the CDATA sections specified in the original XML document
when encoding in binary XML.

 cdsect = 1*(CDATA-TOKEN textdata) CDATAEND-TOKEN

Multiple CDATA chunks (CDATA-TOKEN and textdata) MUST be considered as a single CDATA
section until CDATAEND-TOKEN is reached.

15 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

2.1.9 Nested Documents

Binary XML allows a document to be nested in another document. Nesting of documents is useful
when constructing an XML document from XML fragments that are already encoded in Binary XML.

Nesting allows for fast concatenation of such XML fragments.

 nestedbinaryxml = NEST-TOKEN document ENDNEST-TOKEN

Nested documents MUST have their own scope of name and qname tokens (separate tables).
Subsequent definitions of name and qname inside the nested document MUST start from index 1.

However, they MUST share the same XML namespace scope as their parent document.

2.1.10 Extensions

Extensions provide a way to embed application-specific information into a Binary XML data stream.

 extension = EXTN-TOKEN length32 *byte

Extension is a block of binary data. The length32 specifies its length in bytes followed by the extension
data.

The set of supported extensions and their formats is not specified by this document.

A parser of Binary XML MUST ignore an extension which it does not expect or it does not understand.

If a parser recognizes an extension but its content is not valid, the parser MAY<8> generate an error
and fail.

2.2 Names

During parsing or writing of Binary XML, a parser or writer MUST keep a table of name tokens and

another table of qname tokens. Any string that is used as a local name, a prefix or a namespace
Uniform Resource Identifier (URI) of an XML element or attribute MUST be added to the name table
and the qname table. Any string that is used as a processing instruction target MUST be added in the
name table and the qname table. The scope of these tables is the current document. Nested
documents MUST have separate name and qname token tables.

Name and qname tokens can be declared on the document root level, in the element content, before

an attribute, or between atomic values. See the grammar for all the possible locations.

FLUSH-DEFINED-NAME-TOKENS instructs both parser and writer to discard all previously defined
names and qnames at the current nesting level. Subsequent definition of name or qname MUST
start from index 1. Usage of this token can reduce the amount of memory used by parsers and
writers. A writer MAY<9> choose to use this token in any place it is allowed by the grammar, or it
MAY choose not to use it at all.

2.2.1 Name Definition

Each name MUST be defined and added into the table of names before it is referenced in an element
or attribute. Binary XML uses NAMEDEF-TOKEN to define a new name.

 namedef = NAMEDEF-TOKEN textdata

A name MUST be stored on the next available position in the current name token table and MUST be
assigned its index in that table. The index MUST be sequential and MUST start from 1 (inclusive). The

16 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

index number MUST be used when referring to this name. Index 0 MUST be reserved for an empty
name (zero-length string).

Note that the index of a name is not specified in its definition, it is implied by the current state of the
name table. Both parser and writer will derive the index number from the number of names in the

current name table. As both are using the same algorithm to build their name tables, they will produce
the same result.

2.2.2 (Updated Section) Name Reference

When a defined name is used it MUST be only referenced by its index in the table of names.

 name = mb32 ; assigned starting from 1 ; 0 is reserved for empty name/zero
length string

 ; 0 is reserved for empty name/zero length string

A name is referenced by encoding its index in the current name table as an mb32 token.

Note that the above implies that a name MUST be defined before it is referenced.

2.2.3 QName Definition

A qname MUST be defined by a triplet of a namespace Uniform Resource Identifier (URI), a prefix and
a local name.

 qnamedef = QNAMEDEF-TOKEN namespaceuri prefix localname
 namespaceuri = name
 prefix = name
 localname = name

A parser or writer MUST keep a table of qname tokens. qnames are used for element and attribute

names. When a qname is defined it MUST be added to the qname table and MUST be assigned a
number, which is its index into this table. The indexes MUST be assigned sequentially starting from 1
(inclusive).

2.2.4 QName Reference

When a defined qname is used, it MUST only be referenced by its index in the table of qnames.

 qname = mb32 ; index to the qname table assigned starting from 1, 0 is invalid

A qname is referenced by encoding its index in the current qname table as an mb32 token. Note that

the above implies that the qname MUST be defined before it is referenced.

2.3 Atomic values

2.3.1 Integral Numeric Types

Atomic types SQL-TINYINT, SQL-SMALLINT, SQL-INT and SQL-BIGINT are signed integers.

Atomic types XSD-BYTE, XSD-UNSIGNEDSHORT, XSD-UNSIGNEDINT and XSD-
UNSIGNEDLONG are unsigned integers.

17 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

2.3.2 Multi-byte Integers

Multi-byte integers MUST represent unsigned values and use variable length storage to represent
numbers. Each byte stores 7 bits of the integer. The high-order bit of each byte indicates whether the

following byte is a part of the integer. If the high-order bit is set, the lower seven bits are used and a
next byte MUST be consumed. If a byte has the high-order bit cleared (meaning that the value of the
byte is less than 0x80) then that byte is the last byte of the integer. The least significant byte (LSB) of
the integer appears first.

The following table shows the number of bytes used to store a value in a certain range:

Range from Range to Encoding used

0x00000000 0x0000007F 1 byte

0x00000080 0x00003FFF 2 bytes, LSB stored first

0x00004000 0x001FFFFF 3 bytes, LSB stored first

0x00200000 0x0FFFFFFF 4 bytes, LSB stored first

0x10000000 0x7FFFFFFF 5 bytes, LSB stored first

For mb32 integers the resulting number MUST fit into a signed 32bit integer.

For mb64 integers the resulting number MUST fit into a signed 64bit integer. A parser or writer
MAY<10> choose to limit the valid range of the resulting number even more.

2.3.3 Single Precision Floating Number

A single precision floating number is used to store floating point values with a limited range. The value
MUST be a single precision 32bit [IEEE754] value stored as little-endian.

This is used by the SQL-REAL atomic value.

2.3.4 Double Precision Floating Number

A double precision floating number is used when the limited range of a single precision floating
number is insufficient. The value MUST be a double precision 64bit [IEEE754] value stored as little-
endian.

This is used by the SQL-FLOAT atomic type.

2.3.5 Decimal Number

A value MUST be stored as:

▪ Length (mb32) - The size of the atomic value in bytes. Length MUST include the number of
bytes required to represent precision, scale, sign, and value (as defined below). The value of this

field MUST be one of the following values: 7 (4-byte value), 11 (8-byte value), 15 (12-byte value)

and 19 (16-byte value).

▪ Precision (byte) - The maximum number of digits in base 10. The maximum value is 38.

▪ Scale (byte) - The number of digits to the right of the decimal point. This MUST be less than or
equal to the precision.

▪ Sign (byte) - The sign of the value. 1 is for positive numbers, 0 is for negative numbers, other
values MUST NOT be used.

18 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

▪ Value (4, 8, 12, or 16 bytes) - The number stored as either a 4- or 8- or 12- or 16-byte integer
(little-endian). The size is determined by the Length field.

For example, to specify the base 10 number 20.003 with a scale of 4, the number is scaled to an
integer of 200030 (20.003 shifted by four tens digits), which is 30D5E in hexadecimal. The value

stored in the 16-byte integer is 5E 0D 03 00 00 00 00 00 00 00 00 00 00 00 00 00, the precision is
the maximum precision, the scale is 4, and the sign is 1. Or it can also be a 4-byte integer of 5E 0D
03 00. So the complete representation of this number could be for example:

 07 06 04 01 5E 0D 03 00

This is used by the SQL-DECIMAL, SQL-NUMERIC and XSD-DECIMAL atomic types.

2.3.6 Money

Money is stored as an 8 byte signed integer number (little-endian). Money MUST be a decimal

number with a fixed scale of 4. This means that it is stored as the original value multiplied by 10000.

For example, 10.3001 will be stored as 103001.

This is used by the SQL-MONEY atomic type.

2.3.7 Small Money

Small money is stored as a 4-byte signed integer number (little-endian). Small money MUST be a
decimal number with a fixed scale of 4. This means that it is stored as the original value multiplied by
10000.

This is used by the SQL-SMALLMONEY atomic type.

2.3.8 Unicode Encoded Text

Tokens textdata and textdata64 represent UTF-16LE (Unicode Transformation Format, 16-bits, little
endian) encoded strings. The length of a string MUST be stored as either mb32 (in case of textdata)
or mb64 (in case of textdata64). The length MUST be the number of UTF-16LE characters.

The strings SHOULD<11> be valid UTF-16LE strings. A parser MAY<12> choose not to check this
constraint.

These are used for atomic types SQL-NCHAR, SQL-NVARCHAR, and SQL-NTEXT.

2.3.9 Code Page Encoded Text

Tokens codepagetext and codepagetext64 represent a string encoded in a specified code page.
First, the length of the string MUST be stored. The length MUST be in bytes and MUST include the 4

bytes for the code page number. Next, the code page number MUST be stored as a little-endian 32bit
unsigned integer (4 bytes). The code page number specifies which encoding to use to decode the

string which follows. The mapping between code page number and the encoding is defined as follows:

▪ Code page number 1200 means UTF-16LE (Unicode Transformation Format, 16-bits, little endian)
encoding.

▪ Other code page numbers are defined in [MSDN-CP].

These are used for atomic types SQL-CHAR, SQL-VARCHAR and SQL-TEXT.

19 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

2.3.10 Boolean

Boolean types are used to store logical true or false values.

An XSD-BOOLEAN value MUST be stored as a byte. If the value of the byte is 0, the result is "false".

If the value is 1, the result is "true". A parser SHOULD<13> recognize all nonzero values as "true",
but it MAY choose to support only 0 and 1.

A SQL-BIT value MUST be stored as a byte. Its value SHOULD<14> be either 0 or 1. A parser
MAY<15> choose to support all possible values and report them as a number.

2.3.11 XSD Date

XSD Date is used to store date information originating from XML. The type does not include time
information. For more information about XSD, see [XMLSCHEMA1] and [XMLSCHEMA2].

An XSD Date value MUST be stored as an 8-byte little-endian integer, where the lower two bits store
number 1. The algorithm for computing the value is as follows:

 Value = 1 + 4 * ((60 * 14 + TimeZoneAdj) + (60 * 29 * DayMonthYear))
 TimeZoneAdj = -Sign * (Minutes + 60 * Hour)
 DayMonthYear = Day - 1 + 31 * (Month - 1 + 12 * (Year + 9999))

▪ Day MUST range from 1 to 31 depending on the Month.

▪ Month MUST range from 1 to 12.

▪ Year MUST range from -9999 to 9999.

▪ Minutes MUST range from 0 to 59.

▪ Hour MUST range from 0 to 23.

▪ Sign MUST be 1 for positive time zones and -1 for negative time zones.

A parser SHOULD fail if the specified Year, Month, and Day combination is not valid, but it MAY<16>
choose to report the value to the application. Hour and Minutes are adjustments for time zone.
TimeZoneAdj is positive or negative depending on which direction the adjustment shifts the time. A
time zone adjustment, such as 2003-11-9T00:00-4:30, is a positive TimeZoneAdj, while 2003-11-
9T00:00+4:30 is a negative TimeZoneAdj.

This is used by the atomic type XSD-DATE.

2.3.12 XSD DateTime

XSD DateTime is used to store both date and time information originating from XML. For more

information about XSD, see [XMLSCHEMA1] and [XMLSCHEMA2].

An XSD DateTime value MUST be stored as an 8-byte little-endian integer, where the lower two bits

store number 2. The algorithm for computing the value is as follows:

 Value = 2 + 4 * (
 Milliseconds + 1000 * (
 Seconds + 60 * (
 Minutes + 60 * (
 Hour + 24 * (
 Day - 1 + 31 * (
 Month - 1 + 12 * (

20 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

 Year + 9999)))))))

▪ Day MUST range from 1 to 31 depending on the Month.

▪ Hour MUST range from 0 to 23.

▪ Milliseconds MUST range from 0 to 999.

▪ Minutes MUST range from 0 to 59.

▪ Month MUST range from 1 to 12.

▪ Seconds MUST range from 0 to 59.

A parser SHOULD fail if the specified Year, Month, and Day combination is not valid, but it MAY<17>
choose to report the value to the application. In supporting years from -9999 – 9999, the year -9999
is considered to be 0th year, so an offset of 9999 MUST be applied to Year.

This is used by the atomic type XSD-DATETIME.

2.3.13 (Updated Section) XSD Time

XSD Time is used to store time information originating from XML in cases in which the date does not
need to be preserved. For more information about XSD, see [XMLSCHEMA1] and [XMLSCHEMA2].

An XSD Time value MUST be stored as an 8-byte integer, where the lower two bits store number 0.
The algorithm for computing the value is as follows:

 Value = 4 * (
 Milliseconds + 1000 * ((
 Seconds + 60 * (
 Minutes + 60 * (
 Hour))))

▪ Hour MUST range from 0 to 23.

▪ Milliseconds MUST range from 0 to 999.

▪ Minutes MUST range from 0 to 59.

▪ Seconds MUST range from 0 to 59.

This is used by the XSD-TIME atomic type.

2.3.14 (Updated Section) SQL DateTime and SmallDateTime

SQL DateTime and SmallDateTime are used to store date and time information originating from the
database date and time values.

 DayTicks = number of days since 1900-1-1
 DateTicks = signed 4 byte little-endian integer with value of DayTicks
 SmallDateTicks = unsigned 2 byte little-endian integer with value of DayTicks
 SQLTicksPerMillisecond = 0.3
 SQLTicksPerSecond = 300
 SQLTicksPerMinute = SQLTicksPerSecond * 60
 SQLTicksPerHour = SQLTicksPerMinute * 60
 TicksForMilliseconds = round-off(Milliseconds *
 SQLTicksPerMillisecond + 0.5)
 ; round ; Round-off means disregard decimal points,

21 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

 ; so 1.9 is turned into 1
 TotalTimeTicks = Hours * SQLTicksPerHour +
 Minutes * SQLTicksPerMinute +
 Seconds * SQLTicksPerSecond +
 TicksForMilliseconds
 TimeTicks = unsigned 4 byte little-endian integer with value of TotalTimeTicks
 ; This is the number of seconds times 300
 SmallTotalTimeTicks = Hours * 60 + Minutes
 SmallTimeTicks = unsigned 2 byte little-endian integer with value of SmallTotalTimeTicks
 with value of SmallTotalTimeTicks
 ; This is the number of minutes
 DateTime = DateTicks TimeTicks
 SmallDateTime = SmallDateTicks SmallTimeTicks

▪ Hours MUST range from 0 to 23.

▪ Milliseconds MUST range from 0 to 999.

▪ Minutes MUST range from 0 to 59.

▪ Seconds MUST range from 0 to 59.

Note that for TimeTicks, there are cases in which two different inputs are stored as the same value
due to roundoff. For example, time 00:59:59.999 and time 01:00:00.000 are both stored as value
1080000. A parser SHOULD<18> round up during the parsing of such values and thus report the time
of value 1080000 as 01:00:00.000.

The DateTime is used by the SQL-DATETIME atomic type.

The SmallDateTime is used by the SQL-SMALLDATETIME atomic type.

2.3.15 Uuid

Uuid is a sequence of 16 bytes (stored as little-endian) that specifies a universally unique identifier
(UUID).

The UUID is used by the SQL-UUID atomic type.

2.3.16 Base64

Base64 is used to encode binary data in the text XML format. Base64 is a way to encode binary data
into a string representation, and is defined in [RFC3548].

From the perspective of Binary XML, this is a block of binary data. A parser SHOULD<19> report the
value as binary data. Additionally, it MAY<20> choose to expose this as a Base64 (see [RFC3548])
encoded string. For the definition of a binary block of data, see section 2.3.18.

This is used by the XSD-BASE64 atomic type.

2.3.17 BinHex

BinHex is used to store binary data in the text XML format. From the perspective of Binary XML, this
is a block of binary data. A parser SHOULD<21> report the value as binary data. Additionally, it
MAY<22> choose to expose this as a BinHex-encoded string. For the definition of a binary block of

data, see section 2.3.18.

BinHex is a method for encoding binary data into a string. To encode binary data into a BinHex string,
a parser MUST process binary data one byte at a time starting with the first byte. For each byte, a
parser MUST convert the value of the byte into a hexadecimal representation using uppercase letters.
A single byte is converted into two characters from this set:

22 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

 character = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9" /
 "A" / "B" / "C" / "D" / "E" / "F"

A parser MUST write the character representing the high 4 bits of the byte value to the string output
followed by the character representing the low 4 bits of the byte value.

For example, byte values %x42 %xAC %EF produce a BinHex string "42ACEF".

This is used by the XSD-BINHEX atomic type.

2.3.18 Binary

Atomic types SQL-VARBINARY, SQL-BINARY, SQL-IMAGE, and SQL-UDT are all treated by Binary
XML as a block of binary data. Both parser and writer MUST treat them as such and MUST NOT

perform any validation on their content.

The block of binary data MUST be encoded as specified by the following grammar:

 length = mb32
 length64 = mb64
 data = *byte
 blob = length
 data blob64 = length64 data

Binary blocks MUST be represented by an mb32/mb64 encoded length in bytes and then followed by

the binary data itself.

A parser SHOULD<23> report the value as binary data. Additionally, it MAY<24> choose to expose
this as a Base64-encoded string (see [RFC3548]).

Aside from the atomic types listed above, binary large object (BLOB) is also used to store atomic
types XSD-BASE64 and XSD-BINHEX.

2.3.19 XSD QName

The value of the token XSD-QNAME is stored as a qname reference encoded as mb32. A parser
MUST use the same mechanism as described in QName Reference (section 2.2.4).

This is used by the XSD-QNAME atomic type.

2.4 Atomic Values in Version 2

Version 2 introduced new types for dates and times. These types provide better precision over existing
types for date and time and allow for specification of a time zone (offset).

If the version specified in the beginning of the input is 2, a parser SHOULD<25> recognize types
described in this section. If the version specifies 1, a parser SHOULD<26> fail on these.

2.4.1 (Updated Section) Date

 SqlDate = 3byte ; unsigned little-endian integer representing
 ; the number of days since 0001-1-1

SqlDate values MUST be within the range 0001-1-1 to 9999-12-31.

23 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

SqlDate is used by the XSD-DATE2 atomic type.

2.4.2 DateTime2

 SqlTime = (%x00-02 3byte) / (%x03-04 4byte) / (%x05-07 5byte)

A SqlTime value consists of a precision (first byte), which MUST be a number from 0 to 7, and 3-5
bytes of value. SqlTime is stored as an unsigned little-endian integer.

The value of SqlTime SHOULD<27> be a value from 00:00:00.0000000 through 23:59:59.9999999
with a variable level of fractional precision. For a given precision x, the value will represent the
number of 1/10x seconds. The precision can be specified for the full range from 0 (that is, no fractions
of a second) to 7 (that is, 100 ns precision). For precision 0, an integer value indicating the number of
seconds since 00:00:00 will be returned. For precision 7, an integer value indicating the number of
100 ns since 00:00:00.0000000 will be returned. The value is strictly non-negative. The table below
shows the number of bytes used for each precision and varies from 3 to 5 bytes.

 Time

Precision 0 1 2 3 4 5 6 7

Bytes 3 3 3 4 4 5 5 5

 SqlDateTime2 = SqlTime SqlDate

The SqlDateTime2 is used by the XSD-DATETIME2 atomic type. If the SqlTime part overflows

24:00:00 the parser MUST adjust the SqlDate part accordingly.

It is also used by the XSD-TIME2 atomic type in which case the date part MUST be equal to 1900-1-
1. If the SqlTime part overflows 24:00:00 the parser MUST modify the date accordingly and thus

report a date after 1900-1-1 in case the date is also reported.

2.4.3 DateTimeOffset

 SqlTimeZone = 2byte ; signed little-endian integer - zone in minutes
SqlDateTimeOffset = SqlTime SqlDate SqlTimeZone

SqlDateTimeOffset is similar to SqlDateTime2 except that it additionally provides the time zone
offset through a 2 byte signed integer. Two bytes is sufficient as an offset to specify the number of
minutes from UTC and MUST be within the range of +14:00 and -14:00 hours. Also, the SqlTime
portion of the data type represents the time in UTC, not local time. Since the size of the SqlTime can
vary based on its precision the size of the SqlDateTimeOffset can vary from 8 to 10 bytes.

The SqlDateTimeOffset is used by the XSD-DATETIMEOFFSET atomic type.

It is also used by the XSD-DATEOFFSET atomic type, in which case the SqlTime portion MUST be
ignored.

It is also used by the XSD-TIMEOFFSET atomic type, in which case the SqlDate portion MUST be
ignored.

24 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

3 Structure Examples

3.1 Document

This example illustrates a simple XML document encoded in Binary XML format.

The textual XML for this example is:

 <root>
 <?pi text?>
 <!--comment-->
 </root>

Binary XML:

Token Binary Description

Signature DF FF

Version 01

Encoding B0 04 UTF-16LE (Unicode Transformation Format, 16-bits, little
endian) code page

NAMEDEF-TOKEN 4 "root" F0 04 72 00 6F 00
6F 00

74 00

Name "root" id 1

QNAMEDEF-TOKEN 0 0 1 EF 00 00 01 QName "root" id 1

ELEMENT-TOKEN 1 F8 01 <root>

SQL-NVARCHAR 2 "\n\t" 11 02 0A 00 09 00 new-line and tab

NAMEDEF-TOKEN 2 "pi" F0 02 70 00 69 00 Name "pi" id 2

PI-TOKEN 2 4 "text" F4 02 04 74 00 65
00 78

00 74 00

<?pi text?>

SQL-NVARCHAR 2 "\n\t" 11 02 0A 00 09 00 new-line and tab

COMMENT-TOKEN 7
"comment"

F3 07 63 00 6F 00
6D 00

6D 00 65 00 6E 00
74 00

<!--comment-->

SQL-NVARCHAR 1 "\n" 11 01 0A 00 new-line

ENDELEMENT-TOKEN F7 </root>

3.2 Names

This example illustrates the way names are defined and referenced in Binary XML.

Consider the following piece of text XML:

25 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

 <prefix:localName xmlns:prefix="ns"/>

The fragment of Binary XML representing this would be the following:

Binary token Name table ID QName table ID

NAMEDEF-TOKEN 2 "ns" 1

NAMEDEF-TOKEN 6 "prefix" 2

NAMEDEF-TOKEN 9 "localName" 3

QNAMEDEF-TOKEN 1 2 3 1

ELEMENT-TOKEN 1

NAMEDEF-TOKEN 12 "xmlns:prefix" 4

QNAMEDEF-TOKEN 0 4 0 2

ATTRIBUTE-TOKEN 2

SQL-NVARCHAR 2 "ns"

ENDATTRIBUTES-TOKEN

ENDELEMENT-TOKEN

26 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

4 Security Considerations

None.

27 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

5 (Updated Section) Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

▪ 2007 Microsoft Office system

▪ Microsoft Office 2010 system

▪ Microsoft Office 2013 system

▪ Microsoft Office 2016

▪ Microsoft Office 2019

▪ Microsoft Office 2021

▪ Microsoft SQL Server 2005

▪ Microsoft SQL Server 2008

▪ Microsoft SQL Server 2008 R2

▪ Microsoft SQL Server 2012

▪ Microsoft SQL Server 2014

▪ Microsoft SQL Server 2016

▪ Microsoft SQL Server 2017

▪ Microsoft SQL Server 2019

▪ Microsoft SQL Server 2022

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base

(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2: The Microsoft implementation imposes limits based on system resources such as
available memory.

<2> Section 2.1.1: The Microsoft implementation accepts a version value of 0 and treats it as Version
1.

<3> Section 2.1.5: The Microsoft implementation accepts a setting that specifies whether the input is
to be considered a document or a fragment. If it is considered a document, the Microsoft

implementation fails if the root level contains more than one element, any atomic value, or CDATA. If
it is considered a fragment, the Microsoft implementation allows any number of elements, atomic
values, or CDATA sections at the root level.

<4> Section 2.1.6: The Microsoft implementation accepts multiple atomic values after the
ATTRIBUTE-TOKEN.

28 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

<5> Section 2.1.6: The Microsoft implementation reports namespace declarations that were not
present in the input but would be required by a text representation of the XML as additional attributes.

<6> Section 2.1.7: The Microsoft implementation reports empty string as the namespace Uniform
Resource Identifier (URI) for namespace declaration attributes.

<7> Section 2.1.7: The Microsoft implementation accepts only SQL-NVARCHAR, SQL-NCHAR, or
SQL-NTEXT as the value of a namespace declaration attribute.

<8> Section 2.1.10: The Microsoft implementation does not recognize any extensions and therefore
does not process the content of the extensions in any way.

<9> Section 2.2: The Microsoft implementation of a writer uses FLUSH-DEFINED-NAME-TOKENS to
prevent excessive usage of memory by both writer and parser.

<10> Section 2.3.2: The Microsoft implementation supports only mb32 and treats mb64 as mb32.

<11> Section 2.3.8: The Microsoft implementation does not check for valid surrogate pairs in UTF-
16LE (Unicode Transformation Format, 16-bits, little endian) strings.

:<12> Section 2.3.8: The Microsoft implementation does not check for valid surrogate pairs.

<13> Section 2.3.10: The Microsoft implementation reports all values other than 0 as "true".

<14> Section 2.3.10: The Microsoft implementation supports all possible values, and if an application
asks for the value as a number, it will return the actual value.

<15> Section 2.3.10: The Microsoft implementation supports all possible values, and if an application
asks for the value as a number, it will return the actual value.

<16> Section 2.3.11: The Microsoft implementation checks the validity of a date only if an application
asks for the value to be returned as a data type that it would not be able to store. Otherwise, the
Microsoft implementation returns the value to an application regardless of whether the value is valid.

<17> Section 2.3.12: The Microsoft implementation checks the validity of a date only if an application

asks for the value to be returned as a data type that it would not be able to store. Otherwise, the

Microsoft implementation returns the value to an application regardless of whether the value is valid.

<18> Section 2.3.14: The Microsoft implementation returns the value rounded up, so the original
TimeTicks value of 1080000 is reported as time 01:00:00.000.

<19> Section 2.3.16: The Microsoft implementation returns the value as a Base64 encoded string if
an application asks for the value as a string data type. If an application asks for a binary data type,
the Microsoft implementation returns the value as binary data.

<20> Section 2.3.16: The Microsoft implementation returns the value as a Base64 encoded string if

an application asks for the value as a string data type. If an application asks for a binary data type,
the Microsoft implementation returns the value as binary data.

<21> Section 2.3.17: The Microsoft implementation returns the value as a BinHex encoded string if an
application asks for the value as a string data type. If an application asks for a binary data type, the

Microsoft implementation returns the value as binary data.

<22> Section 2.3.17: The Microsoft implementation returns the value as a BinHex encoded string if an

application asks for the value as a string data type. If an application asks for a binary data type, the
Microsoft implementation returns the value as binary data.

<23> Section 2.3.18: The Microsoft implementation returns the value as a Base64 encoded string if
an application asks for the value as a string data type. If an application asks for a binary data type,
the Microsoft implementation returns the value as binary data.

29 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

<24> Section 2.3.18: The Microsoft implementation returns the value as a Base64 encoded string if
an application asks for the value as a string data type. If an application asks for a binary data type,

the Microsoft implementation returns the value as binary data.

<25> Section 2.4: The Microsoft implementation treats the value of the Version field as the current

state of a document. If a Version 2 document is nested in a Version 1 document, the rest of the parent
document, after the nested document, will be treated as Version 2.

<26> Section 2.4: The Microsoft implementation treats the value of the Version field as the current
state of a document. If a Version 2 document is nested in a Version 1 document, the rest of the parent
document, after the nested document, will be treated as Version 2.

<27> Section 2.4.2: The Microsoft implementation does not produce values outside of the range
00:00:00.0000000 through 23:59:59.9999999, but it will accept values outside of the range.

30 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

6 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

5 Appendix A: Product
Behavior

Added Office 2021 and SQL Server 2022 to the list of
applicable products.

Major

31 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

7 Index
A

Applicability 8

C

Change tracking 30
Common data types and fields 9

D

Data types and fields - common 9

Details
 common data types and fields 9
Document example 24

E

Examples
 Document 24
 Names 24
 overview 24

F

Fields - vendor-extensible 8

G

Glossary 6

I

Implementer - security considerations 26

Informative references 7
Introduction 6

L

Localization 8

N

Names example 24
Normative references 7

O

Overview (synopsis) 8

P

Product behavior 27

R

References 7
 informative 7
 normative 7
Relationship to protocols and other structures 8

32 / 32

[MS-BINXML-Diff] - v20221101
SQL Server Binary XML Structure
Copyright © 2022 Microsoft Corporation
Release: November 1, 2022

S

Security - implementer considerations 26
Structures
 atomic values 16
 atomic values in Version 2 22
 names 15
 overview 9
 XML structures 12

T

Tracking changes 30

V

Vendor-extensible fields 8
Versioning 8

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 (Updated Section) Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 (Updated Section) Structures
	2.1 XML Structures
	2.1.1 Document Root Level
	2.1.2 XML Declaration
	2.1.3 Document Type Declaration
	2.1.4 Comments and Processing Instructions
	2.1.5 Content
	2.1.6 Elements and Attributes
	2.1.7 Namespace Declarations
	2.1.8 CDATA Sections
	2.1.9 Nested Documents
	2.1.10 Extensions

	2.2 Names
	2.2.1 Name Definition
	2.2.2 (Updated Section) Name Reference
	2.2.3 QName Definition
	2.2.4 QName Reference

	2.3 Atomic values
	2.3.1 Integral Numeric Types
	2.3.2 Multi-byte Integers
	2.3.3 Single Precision Floating Number
	2.3.4 Double Precision Floating Number
	2.3.5 Decimal Number
	2.3.6 Money
	2.3.7 Small Money
	2.3.8 Unicode Encoded Text
	2.3.9 Code Page Encoded Text
	2.3.10 Boolean
	2.3.11 XSD Date
	2.3.12 XSD DateTime
	2.3.13 (Updated Section) XSD Time
	2.3.14 (Updated Section) SQL DateTime and SmallDateTime
	2.3.15 Uuid
	2.3.16 Base64
	2.3.17 BinHex
	2.3.18 Binary
	2.3.19 XSD QName

	2.4 Atomic Values in Version 2
	2.4.1 (Updated Section) Date
	2.4.2 DateTime2
	2.4.3 DateTimeOffset

	3 Structure Examples
	3.1 Document
	3.2 Names

	4 Security Considerations
	5 (Updated Section) Appendix A: Product Behavior
	6 Change Tracking
	7 Index

