

1 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

[MS-SSCLRT]:
Microsoft SQL Server CLR Types Serialization Formats

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each

of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your

implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the

documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft's Open Specification Promise (available here:

http://www.microsoft.com/interop/osp) or the Community Promise (available here:
http://www.microsoft.com/interop/cp/default.mspx). If you would prefer a written license, or if

the technologies described in the Open Specifications are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to

Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard

specifications and network programming art, and assumes that the reader either is familiar with the

aforementioned material or has immediate access to it.

Preliminary Documentation. This Open Specification is preliminary documentation for this

technology. Since the documentation may change between this preliminary version and the final
version, there are risks in relying on preliminary documentation. To the extent that you incur

additional development obligations or any other costs as a result of relying on this preliminary

documentation, you do so at your own risk. Pr
el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=114384
http://www.microsoft.com/interop/cp/default.mspx
mailto:iplg@microsoft.com

2 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

Revision Summary

Date Revision History Revision Class Comments

08/07/2009 0.1 Major First release.

11/06/2009 0.1.1 Editorial Revised and edited the technical content.

Pr
el
im

in
ar

y

3 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

Contents

1 Introduction ... 4
1.1 Glossary...4
1.2 References ...4

1.2.1 Normative References ..4
1.2.2 Informative References ..5

1.3 Structure Overview (Synopsis) ...5
1.4 Relationship to Protocols and Other Structures ...5
1.5 Applicability Statement...6
1.6 Versioning and Localization ..6
1.7 Vendor-Extensible Fields ..6

2 Structures... 7
2.1 System CLR Types Structure ..7

2.1.1 The GEOGRAPHY and GEOMETRY Structures ...7
2.1.2 The Basic GEOGRAPHY Structure ..7
2.1.3 The FIGURE Structure .. 10
2.1.4 The SHAPE Structure.. 10
2.1.5 The GEOGRAPHY POINT Structure .. 11
2.1.6 The GEOMETRY POINT Structure .. 12

2.2 The HIERARCHYID Structure .. 12
2.2.1 Logical Definition.. 12
2.2.2 Physical Representation.. 13

2.3 CLR UDTs... 14
2.3.1 SQL Server Native UDT Serialization ... 14

2.3.1.1 Binary Format of Each Byte .. 15
2.3.1.2 Binary Format of Primitive Types .. 15
2.3.1.3 Nested Structures .. 17

2.3.2 User-Defined UDT Serialization ... 17

3 Structure Examples ... 18
3.1 GEOGRAPHY and GEOMETRY Structure Examples ... 18

3.1.1 Example of an Empty Point Structure.. 18
3.1.2 Example of a Geometry Point Structure .. 18
3.1.3 Example of a Linestring Structure ... 19
3.1.4 Example of a Geometry Collection Structure ... 20

3.2 HIERARCHYID Examples... 23
3.3 CLR UDT Serialization Example ... 23

4 Security Considerations .. 26

5 Appendix A: Product Behavior .. 27

6 Change Tracking .. 28

7 Index... 29

Pr
el
im

in
ar

y

4 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

1 Introduction

This document specifies the binary format of the GEOGRAPHY, GEOMETRY, HIERARCHYID, and

common language runtime (CLR) user-defined type (UDT) structures managed by Microsoft®

SQL Server® 2008 RC2. SQL Server provides the geography, geometry, and hierarchyid
SQL Server data types as well as the CLR UDTs that use these structures. The first two of these SQL

Server types implement the OpenGIS Consortium’s (OGC) Simple Feature Specification (SFS)
(OGCSFS). Thus, the content of these structures closely mirrors the SFS.

The structures used to transfer geography and geometry data types are identical. In this

document, the term "GEOGRAPHY structure" refers to both the GEOGRAPHY and GEOMETRY
structures, except where it is necessary to distinguish between the two structures. Likewise,

"geography data type" refers to both the geography and geometry SQL Server data types.

CLR UDTs allow users to extend the SQL Server type system by creating new types. These types can

include any fields and methods defined by the user. The exact structure depends on the user who is
implementing CLR UDTs. The SQL Server client program must contain the knowledge of the internal

structure of each CLR UDT before it can read that type’s binary format.

1.1 Glossary

The following terms are specific to this document:

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

1.2 References

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We

will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[EPSG] European Petroleum Survey Group, "EPSG Geodetic Parameter Dataset version 6.18.2",

February 2009, http://www.epsg.org/Geodetic.html

[IEEE754] Institute of Electrical and Electronics Engineers, "Standard for Binary Floating-Point
Arithmetic", IEEE 754-1985, October 1985,

http://ieeexplore.ieee.org/servlet/opac?punumber=2355.

[MS-NRBF] Microsoft Corporation, ".NET Remoting: Binary Format Data Structure", July 2007.

[OGCSFS] Herring, J. R., "OpenGIS Implementation Specification for Geographic information –

Simple feature access – Part 1: Common Architecture", OGC 06-103r3 Version 1.2.0, October 2006,
http://portal.opengeospatial.org/files/?artifact_id=18241

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt Pr

el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=148018
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-NRBF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=148015
http://go.microsoft.com/fwlink/?LinkId=148015
http://go.microsoft.com/fwlink/?LinkId=90317

5 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

1.2.2 Informative References

[IRE1098] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",

Proceedings of the I.R.E., September 1952, pp 1098-1102,
http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf

[MS-CLRUDT] Microsoft Corporation, “CLR User-Defined Types”, June 2009,

http://msdn.microsoft.com/en-us/library/ms131120.aspx.

1.3 Structure Overview (Synopsis)

The geography and geometry data types are used by SQL Server to represent two-dimensional

objects. The geography data type is designed to handle ellipsoidal coordinates, defined from a
variety of standard Earth-shape references, and is used specifically to accommodate geospatial

data. The geometry data type is nonspecific and can be used for geospatial and other spatial

applications that use Cartesian coordinates.

Instances of the geometry and geography data types can be composed of a variety of complex

features whose definitions are stored in various structures. These structures are described in detail
later in this document.

The hierarchyid<1> data type is used by a SQL Server application to model tree structures in a

more efficient way than was formerly possible. This data type significantly improves on the
performance of current solutions (for instance, recursive queries).

Values of the hierarchyid data type represent nodes in a hierarchy tree. This data type is a system
CLR type, so applications interpret it the same way they would interpret any SQL Server CLR UDT.

The binary structure of the data type, described in detail later in this document, uses a variant on

Huffman encoding to represent the path from the root of a tree to a particular node in that tree. For
more information about Huffman encoding, see [IRE1098].

CLR UDTs can represent any type defined by the user. The user implements CLR UDTs as a
structure using the CLR type system. The binary format of a CLR UDT depends on two factors. The

first factor is the CLR UDT’s internal structure, as defined by the user. The second factor is the
serialization format also chosen by the user. Without knowing these two properties of a CLR UDT,

one cannot decode the binary format.

The user implementing CLR UDTs can include primitive types and other structures. The structures
can include other CLR UDTs. The set of types available for fields may be limited, depending on the

serialization format chosen by the user.

The user can choose between two available serialization formats: SQL Server native UDT

serialization, and user-defined UDT serialization. SQL Server native UDT serialization is designed for

simple CLR UDTs that have a simple structure and only use a specified set of simple primitive types.
User-defined UDT serialization is more flexible and allows users to define complex and more

dynamic CLR UDTs.

To learn more about CLR UDTs, see [MS-CLRUDT].

1.4 Relationship to Protocols and Other Structures

In section 3 of this protocol document ("Structure Examples"), the examples that are provided use

the Well-Known Text (WKT) protocol of the OGCSFS. Pr
el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=149033
http://go.microsoft.com/fwlink/?LinkID=128028
http://go.microsoft.com/fwlink/?LinkID=149033
http://go.microsoft.com/fwlink/?LinkId=128028

6 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

1.5 Applicability Statement

The spatial data format presented in this document is designed for the native code programmer (C

and C++, for example) and documents the disk representation for the Microsoft® SQL Server®
2008 RC2 geography and geometry data types. Programmers using managed code (.NET) are

encouraged to use the SQL CLR Types library (SQLSysClrTypes.msi) and the corresponding builder

API. Please note that Microsoft reserves the right to make changes to this format at any time.

The HIERARCHYID format presented in this document is designed to be used solely with managed

code (.NET) by using the SQL CLR Types library (SQLSysClrTypes.msi) and the corresponding APIs.
Again, note that Microsoft reserves the right to make changes to this format at any time.

The format of CLR UDTs is designed to be used solely with managed code by using the same classes
that define CLR UDTs in a SQL Server client program. As stated earlier in this document, without

knowledge of the internal structure of a CLR UDT and the serialization format that it is using, it is

impossible to read the CLR UDT from the binary data representing it.

1.6 Versioning and Localization

This document describes version 1 of the GEOGRAPHY and HIERARCHY structures. The version

number for the GEOGRAPHY structure is stored in the Version field in the structure. The version

number for the HIERARCHY structure is not stored anywhere in the structure. All fields in the
GEOGRAPHY and HIERARCHYID structures contain either numeric or bit flag data. There are no

localization implications for these structures.

SQL Server does not define any versioning scheme for CLR UDTs. Any version data created by the

user must be part of a CLR UDT itself.

1.7 Vendor-Extensible Fields

GEOGRAPHY and HIERARCHY structures do not contain any extensible fields.

All fields of a CLR UDT are defined by the user who creates this type. The serialization format of

these fields can also be selected by the user.

Pr
el
im

in
ar

y

7 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

2 Structures

2.1 System CLR Types Structure

2.1.1 The GEOGRAPHY and GEOMETRY Structures

The GEOGRAPHY and GEOMETRY structures are stored using the binary format described later in
this section. The GEOGRAPHY structure contains several fixed fields (or header fields) and three

secondary structures that are repeated, as necessary, to describe the geography fully.

The GEOGRAPHY POINT structure contains the coordinates for an individual point and is repeated
for as many points as are present in the GEOGRAPHY structure. One shape structure will appear

for each OGC simple feature contained in the GEOGRAPHY structure. A shape can consist of
multiple figures, each of which is defined by a single figure structure. The GEOGRAPHY structure

contains flags and counts that indicate how many of these subsidiary structures are contained in the

GEOGRAPHY structure.

2.1.2 The Basic GEOGRAPHY Structure

The GEOGRAPHY structure is formatted as shown in the following figure.

Pr
el
im

in
ar

y

8 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

Figure 1: The GEOGRAPHY structure

All integer fields contain 32-bit integers. All double fields contain double-precision floating-point
numbers that are 64 bits (8 bytes) long. Integers and double-precision floating-point numbers are

expressed in little-endian format.

SRID (32 bit integer): The spatial reference identifier (SRID) for the geography.

GEOGRAPHY structures MUST use SRID values<2> in the range of 4120 through 4999, inclusive,

with the exception of null geographies. A value of -1 indicates a null geography. When a null
geography is indicated, all other fields are omitted.

Version (1-byte integer): The version of the GEOGRAPHY structure.

The current version is 1.

Serialization Properties (1-byte unsigned integer): A bit field containing individual bit flags
indicating which optional content is present in the structure, as well as other attributes of the

geography. Pr
el
im

in
ar

y

9 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

Z (0x01): Structure has Z values.

Z MUST NOT be set if P or L is set.

M (0x02): Structure has M values.

M MUST NOT be set if P or L is set.

V (0x04): Geography is valid.

For GEOGRAPHY structures, V is always set.<3>

P (0x08): Geography contains a single point.

Number of Points, Number of Figures, and Number of Shapes are implicitly assumed to be

equal to 1 and are omitted from the structure. In addition, Figures is implicitly assumed to contain
one figure representing a Stroke with the Point Offset of 0 (zero). Lastly, Shape is implicitly

assumed to contain one shape of type Point, with a Figure Offset of 0 (zero) and without any
parents (Parent Offset set to -1). This is an optimization for the common case of a single point.

L (0x10): Geography contains a single line segment.

Number of Points is implicitly assumed to be equal to 2 and does not explicitly appear in the
serialized data. In addition, Figures is implicitly assumed to contain one stroke figure (0x01) with a

Point Offset of 0 (zero). Lastly, Shape is implicitly assumed to contain one shape of type 0x02
(LineString), with a Figure Offset of 0 and without any parents (Parent Offset set to -1).

P and L are mutually exclusive properties.

Number of Points (optional) (32 bit integer): The number of points in the GEOGRAPHY
structure.

This MUST be a strictly positive number. If either the P or L bit is set in the Serialization
Properties bit field, this field is omitted from the structure.

Points (variable) (16 * Number of Points bytes, or 16 bytes): A sequence of point structures.

The point coordinates are contained in GEOGRAPHY POINT structures in GEOGRAPHY structures.

Likewise, coordinates are contained in GEOMETRY POINT structures in GEOMETRY structures.

Both structures contain a pair of doubles.

If neither the P nor L bit is set in the Serialization Properties bit field, there will be Number of

Points points in the sequence. If the P bit is set, there will be one point. If the L bit is set, there will
be two points.

Z Values (optional) (variable) (8 * Number of Points bytes): A sequence of double values for

the Z value of each point.

If the Z bit is set, there will be Number of Points doubles in the array. If a Z value for an

individual point is NULL, it is represented by QNaN.[IEEE754]

M Values (optional) (variable) (8 * Number of Points bytes): A sequence of double values for

the M value of each point.

If the M bit is set, there will be Number of Points doubles in the array. If an M value for an

individual point is NULL, it is represented as QNaN.[IEEE754] Pr
el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=148017
http://go.microsoft.com/fwlink/?LinkId=148017

10 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

Number of Figures (optional) (32 bit integer): The number of figures in the structure. This

MUST be a strictly positive number.

Figures (optional) (variable) (5 * Number of Figure bytes): A sequence of figure structures.

Number of Shapes (optional) (32 bit integer): The number of shapes in the structure. This
MUST be a strictly positive number.

Shapes (optional) (variable) (9 * Number of Shapes bytes): A sequence of shape structures.

2.1.3 The FIGURE Structure

The FIGURE structure defines the partitions in the Points, Z Values, and M Values sequences for
each constituent of the simple feature represented by the geography. A simple feature may have

more than one part, whereas the collection of simple feature types may contain more than one
simple feature, as shown in the following figure.

Figure 2: The FIGURE structure

Figures Attribute (1 byte): Determines the role of this figure within the GEOMETRY structure.

Valid values are as follows:

0 (0x00): Figure is an interior ring in a polygon. Interior rings represent holes in exterior rings.

1 (0x01): Figure is a stroke. A stroke is a point or a line.

2 (0x02): Figure is an exterior ring in a polygon. An exterior ring represents the outer boundary of

a polygon.

The order of the coordinates in each ring of a geography polygon (but not a geometry polygon) is

important. The outer rings for polygons are constructed using the "left-hand" rule to determine the
interior region of a polygon shape. Thus, outer polygon rings have their GEOGRAPHY POINT

coordinate pairs ordered in a counter-clockwise direction. Polygon holes are constructed using the

"right-hand" rule. Thus, polygon holes have their GEOGRAPHY POINT coordinate pairs ordered in
a clockwise direction.

Point Offset (32-bit integer): The offset to the FIGURE structure’s first point in the Points, Z
Values, and M Values sequences.

2.1.4 The SHAPE Structure

The SHAPE structure identifies each simple feature contained in the GEOGRAPHY structure. It links

together the simple feature type, the figure that represents it, and the parent simple feature that
contains the present simple feature (if there is one), as shown in the following figure. Pr

el
im

in
ar

y

11 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

Figure 3: The SHAPE structure

Figure Offset (32-bit integer): The offset to the SHAPE structure’s Figure offset in the Figures
sequence.

Parent Offset (32-bit integer): The offset to the SHAPE structure’s parent (containing) shape in
the Shapes sequence if the shape has a parent, such as an outer ring if a hole, or a multipart

simple feature.

OpenGIS Type (1 byte): The type of simple feature represented by the SHAPE structure.

Valid values are as follows:

0 (0x00): Unknown

1 (0x01): Point

2 (0x02): LineString

3 (0x03): Polygon

4 (0x04): MultiPoint

5 (0x05): MultiLine

6 (0x06): MultiPolygon

7 (0x07): GeometryCollection

2.1.5 The GEOGRAPHY POINT Structure

The GEOGRAPHY POINT structure contains latitude and longitude coordinates as double values
representing a point located on a spheroid, as shown in the following figure.

Figure 4: The GEOGRAPHY POINT structure Pr
el
im

in
ar

y

12 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

Latitude (8byte double): The GEOGRAPHY POINT structure’s latitude.

Longitude (8-byte double): The GEOGRAPHY POINT structure’s longitude.

Latitude and longitude coordinates are stored as decimal degree values. Negative values are used

to designate south latitude and west longitude values.

Latitude values MUST be between -90 and 90 degrees inclusively.

Longitude values MUST be between -15069 and 15069 degrees, inclusive.

Latitude and Longitude values MUST NOT contain Infinity or NaN.[IEEE754]

2.1.6 The GEOMETRY POINT Structure

The GEOMETRY POINT structure contains x and y coordinates as double values representing a

point located on a plane, as shown in the following figure.

Figure 5: The GEOMETRY POINT structure

X Coordinate (8 byte double): The GEOMETRY POINT structure's x coordinate.

Y Coordinate (8 byte double): The GEOMETRY POINT structure's y coordinate.

X Coordinate and Y Coordinate values MUST NOT contain Infinity or NaN. Otherwise, there are no

limitations on the values of x and y.[IEEE754]

2.2 The HIERARCHYID Structure

2.2.1 Logical Definition

A hierarchy tree is an abstract ordered tree. This means that for each node n, there is a "less-than"
(<) order relation on all children of n. This tree has infinite depth. For each node n in the tree, the

children of n are in 1-to-1 correspondence with finite nonempty sequences of integers, which are

called node labels. Given any two children m1 and m2 of n, m1 < m2 if and only if the label of m1
comes before the label of m2 in the lexicographical order in integer sequences. Thus, for a node n,

each child of n has siblings before and after it, and any two children of n have siblings between
them.

The logical representation of a node label for a child of a given node is a sequence of integers
separated by dots (for example, 1, 1.3, or -7.0.-8.9). The hierarchyid data type logically encodes

information about a single node in the hierarchy tree by encoding the path from the root of the tree

to the node. Such a path is logically represented as a sequence of node labels of all children visited
after the root. Each label is followed by a slash, and a slash begins the representation. Thus, a path Pr

el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=148017
http://go.microsoft.com/fwlink/?LinkId=148017

13 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

that only visits the root is represented by a single slash. For example, /, /1/, /0.3. -7/, /1/3/, and

/0.1/0.2/ are valid hierarchyid paths of lengths 1, 2, 2, 3, and 3, respectively.

The hierarchy data type represents a node in the hierarchy tree based on a binary encoding of the

following logical representation. This encoding is described in section 3.1.2, Example of a Geometry
Point Structure.

2.2.2 Physical Representation

We encode the logical representation of a node in the hierarchy tree into a sequence of bits

according to the following representation:

L0 O0 F0 L1 O1 F1 . . . Lk Ok Fk W

In the preceding diagram, each L1/O1 pair encodes one integer in the logical representation of the
node; each F1 is a single bit that is 0 (zero) if the integer is followed by a dot in the logical

representation, and 1 if it is followed by a slash. W is a string of 0 to 7 bits, padding the

representation to the nearest byte; all of the bits in W have value 0.

In the following text, we refer to each L1/O1/F1 triple as a level. If F1 is 0 (zero), the level is said to

be fake; otherwise, it is said to be real.

L1/O1 pairs encode an integer according to the following description. If the ith integer in the logical

representation of the node is n, the L1/O1 pair encodes n for real levels and n+1 for fake levels. This
is done so that, in varbinary (variable-length binary data) comparisons, fake levels compare above

real levels.

Each L1 prefix of an L1/O1 pair specifies a range of integers and a bit size for the following O1 field,
as shown in the following table. Each O1 field has some antiambiguity bits that are always of a fixed

value for a particular L1 value. These bits are used to enable unambiguous backward parsing of the
representation. The third column of the table shows the format of L1/O1 pair with antiambiguity bits

in the O1 field, with all other bits of the O1 field shown as dots.

The actual value of the integer encoded is the value of the O1 field (ignoring antiambiguity bits and
interpreting the rest of the bits as an unsigned integer) added to the lower limit of the range

corresponding to the L1 field.

L1

Bit size of O1
(without/with

antiambiguity
bits) Full format of the L1/O1 pair Range

000100 48/53 000100..............0.....................0......0...0.1... -281479271682120
to -4294971465

000101 32/36 000101...................0......0...0.1... -4294971464 to -
4169

000110 12/15 000110.....0...0.1... -4168 to -73

0010 6/8 0010..0.1... -72 to -9

00111 3/3 00111... -8 to -1

01 2/2 01.. 0 to 3 Pr
el
im

in
ar

y

14 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

L1

Bit size of O1
(without/with
antiambiguity

bits) Full format of the L1/O1 pair Range

100 2/2 100.. 4 to 7

101 3/3 101... 8 to 15

110 6/8 110..0.1... 16 to 79

1110 10/13 1110...0...0.1... 80 to 1103

11110 12/15 11110.....0...0.1... 1104 to 5199

111110 32/36 111110...................0......0...0.1... 5200 to 4294972495

111111 48/53 111111..............0.....................0......0...0.1... 4294972496 to
281479271683151

No integer outside of the range -281479271682120 − 281479271683119 can be represented in this

encoding.

Also, note that the encoding used in the hierarchyid data type is limited to 892 bytes.

Consequently, nodes that have too many levels in their representation to fit into 892 bytes cannot
be represented by the hierarchyid data type.

The encoding for the root node is a binary string of length 0 (zero). Thus, there are 0 levels and no
W field.

Note The encoding represented in the preceding table has three useful properties:

It is parsable. That is, for any binary string, there is at most one interpretation of it as a

sequence of L1/O1/F1 triples, and there is an efficient parsing algorithm.

The representation is also parsable backward (that is, starting from the last byte). This enables

an algorithm to determine a node’s parent without having to parse the entire binary string.

Comparing two encodings by lexicographical binary comparison is equivalent to conducting

depth-first comparisons on the corresponding tree nodes.

2.3 CLR UDTs

This section describes the binary format of CLR UDTs.

SQL Server allows the user to choose between two serialization formats that affect the binary format

of a CLR UDT. SQL Server native UDT serialization is designed for simple CLR UDTs that have a
simple structure and only use a certain set of simple primitive types. User-defined UDT serialization

is more flexible and allows the user to define complex and more dynamic CLR UDTs.

2.3.1 SQL Server Native UDT Serialization

SQL Server native UDT serialization is designed to simplify serialization of simple CLR UDTs.

Therefore, CLR UDTs using SQL Server native UDT serialization need to adhere to certain limitations,

as described in this section.

All primitive fields MUST be of one of the following types: Pr
el
im

in
ar

y

15 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

BOOL, BYTE, SBYTE, USHORT, SHORT, UINT, INT, ULONG, LONG, FLOAT, DOUBLE, SqlByte,

SqlInt16, SqlInt32, SqlInt64, SqlBoolean, SqlSingle, SqlDouble, SqlDateTime, SqlMoney

CLR UDTs using SQL Server native UDT serialization can contain nested structures. Fields defined by

these nested structures must adhere to the same limits that apply to fields of CLR UDTs using SQL
Server native UDT serialization.

The binary format of a CLR UDT using SQL Server native UDT serialization is defined by all of the

UDT’s fields, in the order in which they are defined by the user. The format of each field depends on
its type.

2.3.1.1 Binary Format of Each Byte

Each data type formatted using SQL Server native UDT serialization consists of a series of bytes.
Each byte is formatted as 8 bits representing the byte value in binary representation in a little -

endian bit ordering (formatting all bits in order of their s ignificance, starting with the least

significant bit and ending with the most significant bit).

2.3.1.2 Binary Format of Primitive Types

BOOL values are represented as a single byte. Depending on the BOOL value, the byte takes

one of the following two values: 0x01 for True or 0x00 for False.

BYTE values are represented as a single byte.

SBYTE values are represented as a single byte, but the most significant bit is reversed from 0

(zero) to 1 or from 1 to 0.

USHORT values are represented as 2 bytes. The most significant byte is first, followed by the

least significant byte.

SHORT values are represented as 2 bytes. The most significant byte is first, and it has the most

significant bit reversed from 0 (zero) to 1 or from 1 to 0. It is followed by the least significant

byte.

UINT values are represented as 4 bytes, in the order of their significance, starting with the most

significant byte and ending with the least significant byte.

INT values are represented as 4 bytes, in the order of their significance, starting with the most

significant byte and ending with the least significant byte. The most s ignificant byte has the most

significant bit reversed from 0 (zero) to 1 or from 1 to 0.

ULONG values are represented as 8 bytes, in the order of their significance, starting with the

most significant byte and ending with the least significant byte.

LONG values are represented as 8 bytes, in the order of their significance, starting with the most

significant byte and ending with the least significant byte. The most significant byte has the most

significant bit reversed, from 0 (zero) to 1 or from 1 to 0.

FLOAT values are represented as defined by 4-byte, [IEEE754] single-precision, floating-point

format, but the order of the bytes is reversed.

For positive values (including positive 0 (zero)), the most significant bit of the first byte is

reversed from 0 (zero) to 1.

For negative 0 (zero), all bits remain unchanged. Pr
el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkID=89903

16 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

DOUBLE values are represented as defined by 8-byte, [IEEE754] double-precision, floating-point

format, but the order of the bytes is reversed.

For positive values (including positive 0 (zero), the most significant bit of the first byte is

reversed, from 0 (zero) to 1.

For negative values, all bits of all bytes are reversed, from 0 (zero) to 1 or from 1 to 0.

For negative 0 (zero), all bits remain unchanged.

SqlByte values are represented as 2 bytes. The first byte is a BOOL value that indicates whether

or not the SqlByte value is NULL (True indicates that this value is NULL; False indicates that it

is not NULL). The second byte is the actual BYTE value representing the SqlByte value.

SqlInt16 values are represented as 3 bytes. The first byte is a BOOL value that indicates

whether or not the SqlInt16 value is NULL (True indicates that this value is NULL; False
indicates that it is not NULL). The other 2 bytes are the actual SHORT value representing the

SqlInt16 value.

SqlInt32 values are represented as 5 bytes. The first byte is a BOOL value that indicates

whether or not the SqlInt32 value is NULL (True indicates that this value is NULL; False

indicates that it is not NULL). The other 4 bytes are the actual INT value representing the
SqlInt32 value.

SqlInt64 values are represented as 9 bytes. The first byte is a BOOL value that indicates

whether or not the SqlInt64 value is NULL (True indicates that this value is NULL; False
indicates that it is not NULL). The other 8 bytes are the actual LONG value representing the

SqlInt64 value.

SqlBoolean values are represented as a single byte. Depending on the value of SqlBoolean,

this byte can have any of the following three values: 0x00 for NULL, 0x01 for False, or 0x02 for

True.

SqlSingle values are represented as 5 bytes. The first byte is a BOOL value that indicates

whether or not the SqlSingle value is NULL (True indicates that this value is NULL; False
indicates that it is not NULL). The other 4 bytes are the actual FLOAT value representing the

SqlSingle value.

SqlDouble values are represented as 5 bytes. The first byte is a BOOL value that indicates

whether or not the SqlDouble value is NULL (True indicates that this value is NULL; False

indicates that it is not NULL). The other 4 bytes are the actual DOUBLE value representing the
SqlDouble value.

SqlDateTime values are represented as 9 bytes. The first byte is a BOOL value that indicates

whether or not the SqlDateTime value is NULL (True indicates that this value is NULL; False

indicates that it is not NULL). The next 4 bytes are an INT value representing the date as the

number of days elapsed since 1/1/1900 (for dates before 1/1/1900, this will be a negative
value). The final 4 bytes are an INT value representing the number of ticks elapsed since

midnight of the day represented by the date part. The following rules can be used to calculate the
number of elapsed ticks from the number of elapsed milliseconds:

Each second consists of 300 ticks. All ticks represent values with the number of milliseconds
ending in 0, 3, or 7. For example: 000, 003, 007, 010, 013, 017, 020, …, 990, 993, 997.

The valid range for SqlDateTime values is from 1753-1-1 00:00:00.000 through 9999-12-31

23:59:59.997. Pr
el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkID=89903

17 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

SqlMoney values are represented as 9 bytes. The first byte is a BOOL value that indicates

whether or not the SqlMoney value is NULL (True indicates that this value is NULL; False
indicates that it is not NULL). The other 8 bytes are a LONG value representing the SqlMoney

value multiplied by 10000.

2.3.1.3 Nested Structures

CLR UDT using SQL Server native UDT serialization can include nested structures. Nested structures
are represented by formatting all their fields in the order in which they are defined by the user.

2.3.2 User-Defined UDT Serialization

User-defined UDT serialization is used when SQL Server native UDT serialization does not provide

enough flexibility to express more complex and dynamic structures. The user-defined approach
allows users to implement their own serialization formats using types defined in .NET Remoting

Binary Format.

For more information about .NET Remoting Binary Format, see the [MS-NRBF] protocol

documentation.

Pr
el
im

in
ar

y

http://go.microsoft.com/fwlink/?LinkId=155846

18 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

3 Structure Examples

3.1 GEOGRAPHY and GEOMETRY Structure Examples

The following examples illustrate how a selection of simple features is represented in the structures
defined in this document.

3.1.1 Example of an Empty Point Structure

POINT EMPTY is designed to handle a non-null condition when a function returns an empty set. This

may occur, for instance, when two disjoint spatial features are intersected.

POINT EMPTY is represented by the following binary string:

0x00000000 01 04 00000000 00000000 01000000 FFFFFFFF FFFFFFFF 01

which is interpreted as shown in the following table.

Binary value Description

00000000 SRID = 0

01 Version = 1

04 Serialization Properties = V (is valid)

00000000 Number of Points = 0 (no points)

00000000 Number of Figures = 0 (no figures)

01000000 Number of Shapes = 1

FFFFFFFF 1st Shape Parent Offset = -1 (no parent)

FFFFFFFF 1st Shape Figure Offset = -1 (no figure)

01 1st Shape OpenGIS Type = 1 (point)

3.1.2 Example of a Geometry Point Structure

POINT(5 10) holds a 0-dimension feature that represents a point location. The following figure

shows a geometry point feature located at the intersection of 5 on the x-axis and 10 on the y-axis

(the actual point is surrounded by a circular symbol to make it easier to see).

Figure 6: A geometry point

POINT (5 10) in SRID 4326 is represented by the following binary string:

 Pr
el
im

in
ar

y

19 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

0xE6100000 01 0C 0000000000001440 0000000000002440

which is interpreted as shown in the following table.

Binary value Description

E6100000 SRID = 4326

01 Version = 1

0C Serialization Properties = V + P (geometry is valid, single point)

0000000000001440 X = 5

0000000000002440 Y = 10

3.1.3 Example of a Linestring Structure

A LINESTRING is an ordered series of connected points. The LINESTRING (0 1 1, 3 2 2, 4 5 NULL)
contains a Z value for each point location, with the last Z value being NULL. The following figure

represents the x and y coordinates only for a geometry type.

Figure 7: A geometry linestring

LINESTRING (0 1 1, 3 2 2, 4 5 NULL) is represented by the following binary string:

0xE6100000 01 05 03000000 0000000000000000 000000000000F03F 0000000000000840
0000000000000040 0000000000001040 0000000000001440 000000000000F03F

0000000000000040 000000000000F8FF 01000000 01 00000000 01000000 FFFFFFFF 00000000 02

which is interpreted as shown in the following table.

Binary value Description

E6100000 SRID = 4326

01 Version = 1

05 Serialization Properties = V + Z (geometry is valid, has Z values)

03000000 Number of Points = 3 Pr
el
im

in
ar

y

20 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

Binary value Description

0000000000000000 1st point X = 0

000000000000F03F 1st point Y = 1

0000000000000840 2nd point X = 3

0000000000000040 2nd point Y = 2

0000000000001040 3rd point X = 4

0000000000001440 3rd point Y = 5

000000000000F03F 1st point Z = 1

0000000000000040 2nd point Z= 2

000000000000F8FF 3rd point Z = QNaN

01000000 Number of Figures = 1

01 1st Figure Attribute = 1 (stroke)

00000000 1st Figure Point Offset = 0 (figure starts with 1st point)

01000000 Number of Shapes = 1

FFFFFFFF 1st Shape Parent Offset = -1 (no parent)

00000000 1st Shape Figure Offset = 0 (shape starts with 1st figure)

02 1st Shape OpenGIS Type = 2 (linestring)

3.1.4 Example of a Geometry Collection Structure

A GEOMETRYCOLLECTION is a heterogeneous collection of simple features. The following figure
shows a geography containing a single point, a single linestring, and a polygon with an interior ring

(hole).

Figure 8: A geometry collection containing a point, a linestring, and a polygon with a hole

A GEOMETRYCOLLECTION (POINT (4 0), LINESTRING (4 2, 5 3), POLYGON ((0 0, 3 0, 3 3, 0 3, 0 0),

(1 1, 1 2, 2 2, 2 1, 1 1))) is represented by the following binary string:

 Pr
el
im

in
ar

y

21 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

0xE6100000 01 04 0D000000

0000000000000000 0000000000001040 0000000000000040 0000000000001040 0000000000000840

0000000000001440 0000000000000000 0000000000000000 0000000000000000 0000000000000840

0000000000000840 0000000000000840 0000000000000840 0000000000000000 0000000000000000

0000000000000000 000000000000F03F 000000000000F03F 0000000000000040 000000000000F03F

0000000000000040 0000000000000040 000000000000F03F 0000000000000040 000000000000F03F

000000000000F03F

04000000 01 00000000 01 01000000 02 03000000 00 08000000

04000000 FFFFFFFF 00000000 07 00000000 00000000 01 00000000 01000000 02

00000000 02000000 03

which is interpreted as shown in the following table.

Binary value Description

E6100000 SRID = 4326

01 Version = 1

04 Serialization Properties = V (geography is valid)

0D000000 Number of Points = 13

0000000000000000 1st point latitude = 0

0000000000001040 1st point longitude = 4

0000000000000040 2nd point latitude = 2

0000000000001040 2nd point longitude = 4

0000000000000840 3rd point latitude = 3

0000000000001440 3rd point longitude = 5

0000000000000000 4th point latitude = 0

0000000000000000 4th point longitude = 0

0000000000000000 5th point latitude = 0

0000000000000840 5th point longitude = 3

0000000000000840 6th point latitude = 3

0000000000000840 6th point longitude = 3

0000000000000840 7th point latitude = 3

0000000000000000 7th point longitude = 0

0000000000000000 8th point latitude = 0

0000000000000000 8th point longitude = 0

000000000000F03F 9th point latitude = 1

000000000000F03F 9th point longitude = 1 Pr
el
im

in
ar

y

22 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

Binary value Description

0000000000000040 10th point latitude = 2

000000000000F03F 10th point longitude = 1

0000000000000040 11th point latitude = 2

0000000000000040 11th point longitude = 2

000000000000F03F 12th point latitude = 1

0000000000000040 12th point longitude = 2

000000000000F03F 13th point latitude = 1

000000000000F03F 13th point longitude = 1

04000000 Number of Figures = 4

01 1st Figure Attribute = 1 (stroke)

00000000 1st Figure Point Offset = 0 (figure starts with 1st point)

01 2nd Figure Attribute = 1 (stroke)

01000000 2nd Figure Point Offset = 1 (figure starts with 2nd point)

02 3rd Figure Attribute = 2 (exterior polygon ring)

03000000 3rd Figure Point Offset = 3 (figure starts with 4th point)

00 4th Figure Attribute = 0 (interior polygon ring)

08000000 4th Figure Point Offset = 8 (figure starts with 9th point)

04000000 Number of Shapes = 4

FFFFFFFF 1st Shape Parent Offset = -1 (no parent)

00000000 1st Shape Figure Offset = 0 (shape starts with 1st figure)

07 1st Shape OpenGIS Type = 7 (GeometryCollection)

00000000 2nd Shape Parent Offset = 0 (parent shape is 1st shape)

00000000 2nd Shape Figure Offset = 0 (shape starts with 1st figure)

01 2nd Shape OpenGIS Type = 1 (Point)

00000000 3rd Shape Parent Offset = 0 (parent shape is 1st shape)

01000000 3rd Shape Figure Offset = 1 (shape starts with 2nd figure)

02 3rd Shape OpenGIS Type = 2 (LineString)

00000000 4th Shape Parent Offset = 0 (parent shape is 1st shape)

02000000 4th Shape Figure Offset = 2 (shape starts with 3rd figure)

03 4th Shape OpenGIS Type = 3 (Polygon) Pr
el
im

in
ar

y

23 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

3.2 HIERARCHYID Examples

The root node is represented by an empty HIERARCHYID structure (that is, a zero-length bit

sequence).

Example 1

The first child of the root node, with a logical representation of /1/, is represented as the following

bit sequence:

01011000

The first two bits, 01, are the L1 field, meaning that the first node has a label between 0 (zero) and
3. The next two bits, 01, are the O1 field and are interpreted as the integer 1. Adding this to the

beginning of the range specified by the L1 yields 1. The next bit, with the value 1, is the F1 field,
which means that this is a "real" level, with 1 followed by a slash in the logical representation. The

final three bits, 000, are the W field, padding the representation to the nearest byte.

Example 2

As a more complicated example, the node with logical representation /1/-2.18/ (the child with label

-2.18 of the child with label 1 of the root node) is represented as the following sequence of bits (a
space has been inserted after every grouping of 8 bits to make the sequence easier to follow):

01011001 11111011 00000101 01000000

The first three fields are the same as in the first example. That is, the first two bits (01) are the L1
field, the second two bits (01) are the O1 field, and the fifth bit (1) is the F1 field. This encodes the

/1/ portion of the logical representation.

The next 5 bits (00111) are the L2 field, so the next integer is between -8 and -1. The following 3

bits (111) are the O2 field, representing the offset 7 from the beginning of this range. Thus, the L2
and O2 fields together encode the integer -1. The next bit (0) is the F2 field. Because it is 0 (zero),

this level is fake, and we need to subtract 1 from the integer yielded by the L2 and O2 fields.

Therefore, the L2, O2, and F2 fields together represent -2 in the logical representation of this node.

The next 3 bits (110) are the L3 field, so the next integer is between 16 and 79. The subsequent 8

bits (00001010) are the L4 field. Removing the antiambiguity bits from there (the third bit (0) and
the fifth bit (1)) leaves 000010, which is the binary representation of 2. Thus, the integer encoded

by the L3 and O3 fields is 16+2, which is 18. The next bit (1) is the F3 field, representing the slash

(/) after the 18 in the logical representation. The final 7 bits (0000000) are the W field, padding the
physical representation to the nearest byte.

3.3 CLR UDT Serialization Example

The following example of a CLR UDT contains all of the primitive types described in this document.

The CLR UDT is defined in the C# programming language as follows:

[SqlUserDefinedType(Format.Native)]

public struct SampleNativeUdt : INullable

{

 public bool BoolValue;

 public byte ByteValue;

 public sbyte SByteValue;

 public short ShortValue;

 public ushort UShortValue;

 public int IntValue; Pr
el
im

in
ar

y

24 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

 public uint UIntValue;

 public long LongValue;

 public ulong ULongValue;

 public float FloatValue;

 public double DoubleValue;

 public SqlByte SqlByteValue;

 public SqlInt16 SqlInt16Value;

 public SqlInt32 SqlInt32Value;

 public SqlInt64 SqlInt64Value;

 public SqlDateTime SqlDateTimeValue;

 public SqlSingle SqlSingleValue;

 public SqlDouble SqlDoubleValue;

 public SqlMoney SqlMoneyValue;

 public SqlBoolean SqlBooleanValue;

 // Implementation methods

}

In the preceding example, the CLR UDT’s fields are initialized with the following values:

BoolValue = true;

ByteValue = 1;

SByteValue = -2;

ShortValue = 3;

UShortValue = 4;

IntValue = -5;

UIntValue = 6;

LongValue = 7;

ULongValue = 8;

FloatValue = 123456789.0123456789;

DoubleValue = -123456789.0123456789;

SqlByteValue = 9;

SqlInt16Value = -10;

SqlInt32Value = 11;

SqlInt64Value = 12;

SqlDateTimeValue = "1/1/2000 12:00:00";

SqlSingleValue = -123456789.0123456789;

SqlDoubleValue = 123456789.0123456789;

SqlMoneyValue = "$13";

SqlBooleanValue = true;

Binary formatting of this CLR UDT produces the following stream of bytes in hexadecimal notation.
Anything after “--" is a comment intended to improve the readability of this example and is not part
of the binary format for this CLR UDT:

01 -- bool true

01 -- byte 1

7E -- sbyte -2

8003 -- short 3

0004 -- ushort 4

7FFFFFFB -- int -5

00000006 -- uint 6

8000000000000007 -- long 7

0000000000000008 -- ulong 8 Pr
el
im

in
ar

y

25 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

CCEB79A3 -- float 123456789.0123456789

3E6290CBABF35BA7 -- double -123456789.0123456789

0109 -- SqlByte [bool true, byte 9]

017FF6 -- SqlInt16 [bool true, short -10]

018000000B -- SqlInt32 [bool true, int 11

01800000000000000C -- SqlInt64 [bool true, long 12]

0180008EAC80C5C100 -- SqlDateTime [bool true, int 36524 days since 1/1/1900, int 12960000

ticks since midnight]

013314865C -- SqlSingle [bool true, float -123456789.0123456789]

01C19D6F34540CA458 -- SqlDouble [bool true, double 123456789.0123456789]

01800000000001FBD0 -- SqlMoney [bool true, long 130000]

02 -- SqlBoolean true

Pr
el
im

in
ar

y

26 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

4 Security Considerations

None.

Pr
el
im

in
ar

y

27 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

5 Appendix A: Product Behavior

The information in this specification is applicable to the following versions of Windows:

Microsoft Windows® NT operating system

Microsoft Windows® 2000 operating system

Windows XP® operating system

Windows Server® 2003 operating system

Windows Server 2003 R2 operating system

Windows Server 2003 operating system with SP1

Windows Server 2003 operating system with SP2

Windows Server 2003 operating system with SP3

Windows Vista® operating system

Windows Server® 2008 operating system

Windows 7 operating system

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional behavior

in this specification prescribed using the terms SHOULD or SHOULD NOT implies that the

aforementioned Microsoft products’ behavior is in accordance with the SHOULD or SHOULD NOT
prescription. Unless otherwise specified, the term MAY implies that these Microsoft products do not

follow the prescription.

<1> Section 1.3: Microsoft’s implementation does not produce values outside of the range

00:00:00.0000000 through 23:59:59.9999999, but it will accept values outside of the range as

described in section 2.4.2 in [MS-BINXML].

<2> Section 2.1.2: The SQL Server 2008 geography data type utilizes EPSG SRID values [EPSG],

as published in EPSG Dataset version 6.17 (Release date: July 2008) for values 4120 through 4999,
inclusive, with the exception of null geographies.

<3> Section 2.1.2: SQL Server 2008 never reads the V flag.

Pr
el
im

in
ar

y

%5bMS-BINXML%5d.pdf
%5bMS-BINXML%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=148018

28 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last

release.

Pr
el
im

in
ar

y

29 / 29

[MS-SSCLRT] — v20091106
 Microsoft SQL Server CLR Types Serialization Formats

 Copyright © 2009 Microsoft Corporation.

 Release: Friday, November 6, 2009

7 Index

A

Applicability statement 6

B

Basic GEOGRAPHY structure 7

C

Change tracking 28

E

Examples
Empty point structure 18
GEOGRAPHY structure 18
Geometry collection structure 20
Geometry point structure 18
GEOMETRY structure 18
Linestring structure 19

F

FIGURE structure 10

G

GEOGRAPHY POINT structure 11
GEOGRAPHY structure 7
GEOMETRY POINT structure 12
GEOMETRY structure 7
Glossary 4

H

HIERARCHYID examples 23
HIERARCHYID structure 12

Logical definition 12
Physical representation 13

I

Informative references 5
Introduction 4

L

Localization 6

N

Normative references 4

P

Product behavior
Endnotes 27

R

References
Informative 4
Normative 4

Relationship to protocols and other structures 5

S

Security considerations 26
SHAPE structure 10
Structure examples 18
Structure overview (synopsis) 5
Structures 7

FIGURE 10
GEOGRAPHY 7
GEOGRAPHY POINT 11
GEOMETRY 7
GEOMETRY POINT 12
SHAPE 10

System CLR Types structure 7

T

Tracking changes 28

V

Vendor-extensible fields 6
Versioning 6

Pr
el
im

in
ar

y

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Structure Overview (Synopsis)
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 System CLR Types Structure
	2.1.1 The GEOGRAPHY and GEOMETRY Structures
	2.1.2 The Basic GEOGRAPHY Structure
	2.1.3 The FIGURE Structure
	2.1.4 The SHAPE Structure
	2.1.5 The GEOGRAPHY POINT Structure
	2.1.6 The GEOMETRY POINT Structure

	2.2 The HIERARCHYID Structure
	2.2.1 Logical Definition
	2.2.2 Physical Representation

	2.3 CLR UDTs
	2.3.1 SQL Server Native UDT Serialization
	2.3.1.1 Binary Format of Each Byte
	2.3.1.2 Binary Format of Primitive Types
	2.3.1.3 Nested Structures

	2.3.2 User-Defined UDT Serialization

	3 Structure Examples
	3.1 GEOGRAPHY and GEOMETRY Structure Examples
	3.1.1 Example of an Empty Point Structure
	3.1.2 Example of a Geometry Point Structure
	3.1.3 Example of a Linestring Structure
	3.1.4 Example of a Geometry Collection Structure

	3.2 HIERARCHYID Examples
	3.3 CLR UDT Serialization Example

	4 Security Considerations
	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

