

1 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

[MS-SSCLRT-Diff]:

Microsoft SQL Server CLR Types Serialization Formats

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’sIDL's, or code samples that are included in the documentation.

This permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies

described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, emaile-
mail addresses, logos, people, places, and events depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address,

logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain

Open Specifications are intended for use in conjunction with publicly available standard

specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

08/078/7/2009 0.1 Major First release.

11/066/2009 0.1.1 Editorial
RevisedChanged language and editedformatting in the
technical content.

03/053/5/2010 0.2 Minor UpdatedClarified the meaning of the technical content.

044/21/2010 1.0 Major Updated and revised the technical content.

06/046/4/2010 1.0.1 Editorial
RevisedChanged language and editedformatting in the
technical content.

066/22/2010 2.0 Major
Significantly changedUpdated and revised the technical
content.

09/039/3/2010 3.0 Major
Significantly changedUpdated and revised the technical
content.

02/092/9/2011 3.1 Minor Clarified the meaning of the technical content.

07/077/7/2011 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

11/033/2011 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

011/19/2012 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

022/23/2012 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

033/27/2012 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

055/24/2012 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

066/29/2012 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

077/16/2012 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

10/088/2012 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

10/23/2012 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

033/26/2013 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

066/11/2013 3.1 No No changes to the meaning, language, or formatting of

3 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Date
Revision
History

Revision
Class Comments

changeNone the technical content.

08/088/8/2013 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

12/055/2013 3.1
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

022/11/2014 4.0 Major
Significantly changedUpdated and revised the technical
content.

055/20/2014 4.0
No
changeNone

No changes to the meaning, language, or formatting of
the technical content.

5/10/2016 5.0 Major Significantly changed the technical content.

4 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Table of Contents

1 Introduction .. 5
1.1 Glossary.. 5
References ... 6
1.2 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 6

1.3 Overview... 6
1.4 Relationship to Protocols and Other Structures ... 7
1.5 Applicability Statement ... 7
1.6 Versioning and Localization ... 8
1.7 Vendor-Extensible Fields ... 8

2 Structures ... 9
2.1 GEOGRAPHY and GEOMETRY Structures .. 9

2.1.1 Basic GEOGRAPHY Structure (Version 1) .. 9
2.1.2 Basic GEOGRAPHY Structure (Version 2) .. 11
2.1.3 FIGURE Structure ... 13
2.1.4 SHAPE Structure ... 14
2.1.5 GEOGRAPHY POINT Structure ... 15
2.1.6 GEOMETRY POINT Structure ... 16
2.1.7 SEGMENT Structure .. 16

2.2 HIERARCHYID Structure .. 17
2.2.1 Logical Definition .. 17
2.2.2 Physical Representation ... 17

2.3 CLR UDTs .. 18
2.3.1 Native UDT Serialization .. 19

2.3.1.1 Binary Format of Each Byte .. 20
2.3.1.2 Binary Format of Primitive Types ... 20
2.3.1.3 Nested Structures ... 21

2.3.2 User-Defined UDT Serialization ... 22

3 Structure Examples ... 23
3.1 GEOGRAPHY and GEOMETRY Structure Examples ... 23

3.1.1 Example of an Empty Point Structure .. 23
3.1.2 Example of a Geometry Point Structure ... 23
3.1.3 Example of a Linestring Structure ... 24
3.1.4 Example of a Geometry Collection Structure... 25
3.1.5 Example of an Object Serialized in Version 2 .. 28

3.2 HIERARCHYID Examples ... 29
3.3 CLR UDT Serialization Example .. 30

4 Security Considerations ... 32

5 Appendix A: Product Behavior ... 33

6 Change Tracking .. 34

7 Index ... 36

5 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

1 1 Introduction

The SQL Server CLR types serialization formats are the binary formats of the GEOGRAPHY,
GEOMETRY, HIERARCHYID, and common language runtime (CLR) user-defined type (UDT)
structures that are managed by the protocol server. The protocol server provides the geography,
geometry, and hierarchyid protocol server data types as well as the CLR UDTs that use these
structures.

The geography and geometry protocol server data types implement the OpenGIS
Consortium’sConsortium's (OGC) Simple Feature Specification (SFS) [OGCSFS] section 8. Thus, the
content of these structures closely mirrors the SFS.

The hierarchyid protocol server data type represents a position in a certain hierarchy. The content of
an individual entry of this data type within a column of hierarchyid data does not represent a
hierarchy tree, and therefore it is the application that needs to generate and assign values in such a

way that will represent the desired relationship between rows in the column.

CLR UDTs enable users to extend the protocol server type system by creating new types. These types
can include any fields and methods defined by the user. The exact structure depends on the user who
is implementing CLR UDTs. The protocol client program must contain the knowledge of the internal
structure of each CLR UDT before it can read that type’stype's binary format.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD, MUST,
MUST NOT, and SHOULD NOT as defined in RFC 2119.. All other sections and examples in this

specification are informative.

1.1 1.1 Glossary

The This document uses the following terms are defined in [MS-GLOS]::

little-endian

The following terms are specific to this document:

common language runtime (CLR): The common languagecore runtime isengine in the
infrastructure that theMicrosoft .NET Framework uses to execute all managedfor executing
applications. The common language runtime supplies managed code with services such as cross-
language integration, code access security, object lifetime management, and debugging and
profiling support.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

user-defined type (UDT): User-defined types can extend the scalar type system of the protocol
server database, enabling storage of CLRcommon language runtime objects in a protocol
server database. UDTs can contain multiple elements, and they can have behaviors, which
differentiates to differentiate them from the traditional alias data types that consist of a single
protocol server system data type.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
describeddefined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

6 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

1.2 References

1.2 References

Links to a document in the Microsoft Open Specifications documentation do not include a publishing
year because links are library point to the latestcorrect section in the most recently published version
of the referenced document. However, because individual documents, which in the library are not
updated frequently. References to otherat the same time, the section numbers in the documents
include a publishing year when one is available.may not match. You can confirm the correct section

numbering by checking the Errata.

1.1.11.2.1 1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MS-NRBF] Microsoft Corporation, ".NET Remoting: Binary Format Data Structure".

[MS-TDS] Microsoft Corporation, "Tabular Data Stream Protocol".

[OGCSFS] Herring, J. R., Ed., "OpenGIS Implementation Specification for Geographic information –

Simple feature access – Part 1: Common architecture", OGC 06-103r3 Version 1.2.0, October 2006,
http://portal.opengeospatial.org/files/?artifact_id=18241

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.1.21.2.2 1.2.2 Informative References

[IRE1098] See [IRE-MRC].

[IRE-MRC] Huffman, D., "A Method for the Construction of Minimum-Redundancy Codes", Proceedings
of the I.R.E., vol. 40, pp. 1098-1101, September 1952,

http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf

[MS-BINXML] Microsoft Corporation, "SQL Server Binary XML Structure".

[MS-CLRUDT] See [MSDN-CLRUDT].

[MSDN-CLRUDT] Microsoft Corporation, "CLR User-Defined Types", http://msdn.microsoft.com/en-
us/library/ms131120.aspx

1.3 [MSDN-UDTR] Microsoft Corporation, "User-Defined Type Requirements",
http://msdn.microsoft.com/en-us/library/ms131082.aspx

1.21.3 Overview

The geography and geometry data types are used by the protocol server to represent two-
dimensional objects. The geography data type is designed to handle ellipsoidal coordinates that are

defined from a variety of standard Earth-shape references, and is used specifically to accommodate
geospatial data. The geometry data type is nonspecific and can be used for geospatial and other
spatial applications that use Cartesian coordinates.

7 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Instances of the geometry and geography data types can be composed of a variety of complex
features whose definitions are stored in various structures. These structures are described in detail

later in this document.

The hierarchyid data type is used by a protocol server application to model tree structures in a more

efficient way than was formerly possible. This data type significantly improves on the performance of
current solutions (for instance, recursive queries).

Values of the hierarchyid data type represent nodes in a hierarchy tree. This data type is a system
common language runtime (CLR) type, so applications interpret it the same way they would interpret
any protocol server CLR user-defined type (UDT). The binary structure of the data type, described in
detail later in this document, uses a variant on Huffman encoding to represent the path from the root
of a tree to a particular node in that tree. For more information about Huffman encoding, see [IRE-

MRC].

CLR UDTs can represent any type defined by the user. The user implements a CLR UDT as a structure
by using the CLR type system. The binary format of a CLR UDT depends on two factors. The first
factor is the CLR UDT’sUDT's internal structure, as defined by the user. The second factor is the

serialization format also chosen by the user. To decode the binary format of a CLR UDT, it is necessary
to know these two properties of the CLR UDT.

The user implementing CLR UDTs can include primitive types and other structures. The structures can
include other CLR UDTs. The set of types available for fields may be limited, depending on the
serialization format chosen by the user.

The user can choose between two available serialization formats: protocol server native UDT
serialization, and user-defined UDT serialization. Protocol server native UDT serialization is designed
for simple CLR UDTs that have a simple structure and use only a specified set of simple primitive
types. User-defined UDT serialization is more flexible and enables users to define complex and more

dynamic CLR UDTs.

To learn more about CLR UDTs, see [MSDN-CLRUDT].

1.31.4 1.4 Relationship to Protocols and Other Structures

All structures described in this document are designed to be transported over Tabular Data Stream
protocol as described in section 2.2.5.5.2 of [MS-TDS].

1.41.5 1.5 Applicability Statement

The spatial data format presented in this document is designed for the native code programmer (who

uses code such as C and C++, for example) and documents the disk representation for the protocol
server geography and geometry data types. Programmers who use managed code (such as
Microsoft .NET Framework) are encouraged to use the SQL CLR Types library (SQLSysClrTypes.msi)
and the corresponding builder API.

The HIERARCHYID format presented in this document is designed to be used solely with managed
code by using the SQL CLR Types library (SQLSysClrTypes.msi) and the corresponding APIs.

The format of common language runtime (CLR) user-defined types (UDTs) is designed to be used

solely with managed code by using the same classes that define CLR UDTs in a protocol client
program. As stated earlier in this document, without knowledge of the internal structure of a CLR UDT
and the serialization format that it is using, it is impossible to read the CLR UDT from the binary data
representing it.

8 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

1.51.6 1.6 Versioning and Localization

This document describes only a single version of the serialization formats that apply to the
HIERARCHYID and common language runtime (CLR) user-defined type (UDT) structures, so there

are no versioning implications involved.

This document describes version 1 and version 2 of the serialization format that is used for the
GEOGRAPHY and GEOMETRY structures.<1> Aspects of later serialization format versions that do
not apply to earlier versions are specifically identified throughout this document:

  Version 1 of the GEOGRAPHY and GEOMETRY structures is described in section 2.1.1.

  Version 2 of the GEOGRAPHY and GEOMETRY structures is described in section 2.1.2.

  Differences between versions 1 and 2 in the FIGURE structure are described in section 2.1.3.

  Differences between versions 1 and 2 in the SHAPE structure are described in section 2.1.4.

  The new SEGMENT structure that was added in version 2 is described in section 2.1.7.

There are no localization implications for these structures.

The protocol server does not define any versioning scheme for CLR UDTs. Any version data created by

the user must be part of a CLR UDT itself.

1.61.7 1.7 Vendor-Extensible Fields

The GEOMETRY, GEOGRAPHY, and HIERARCHYID structures do not contain any extensible fields.

All fields of a common language runtime (CLR) user-defined type (UDT) are defined by the user who
creates the type. The serialization format of these fields can also be selected by the user.

9 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

2 2 Structures

2.1 2.1 GEOGRAPHY and GEOMETRY Structures

The GEOGRAPHY and GEOMETRY structures are serialized by using the binary format described later

in this section. Each structure contains several fixed fields (or header fields) and building
elements<2> that are repeated, as necessary, to describe the geography fully.

The GEOGRAPHY POINT and GEOMETRY POINT structures contain the coordinates for an individual
point and are repeated for as many points as are present in the GEOGRAPHY or GEOMETRY
structure. One shape structure appears for each OGC simple feature that is contained in the
GEOGRAPHY or GEOMETRY structure. A shape can consist of multiple figures, each of which is

defined by a single figure structure. The GEOGRAPHY and GEOMETRY structures contain flags and
counts that indicate how many of these building elements are contained in the GEOGRAPHY and
GEOMETRY structures.

The structures that are used to transfer geography and geometry data types are identical.

Therefore, in the remainder of this document, the term "GEOGRAPHY structure" refers to both the
GEOGRAPHY and GEOMETRY structures, except where it is necessary to distinguish between the
two structures. Likewise, "geography data type" refers to both the geography and geometry

protocol server data types.

Note The term "GEOGRAPHY POINT structure" does not also refer to the GEOMETRY POINT
structure in this document.

2.1.1 2.1.1 Basic GEOGRAPHY Structure (Version 1))

Version 1 of the GEOGRAPHY structure is formatted as shown in the following packet diagram. All
double fields contain double-precision floating-point numbers that are 64 bits (8 bytes) long. Integers
and double-precision floating-point numbers are expressed in little-endian format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SRID

Version Serialization Properties Number of Points (optional, unsigned)

... Points (optional, variable) (16 * Number of Points
bytes) (variable)

...

Z Values (optional, 8 * Number of Points bytes) (variable)

...

M Values (optional, 8 * Number of Points bytes) (variable)

...

Number of Figures (optional, unsigned)

10 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Figures (optional, 5 * Number of Figure bytes) (variable)

...

Number of Shapes (optional, unsigned)

Shapes (optional, 9 * Number of Shapes bytes) (variable)

...

SRID (4 bytes): (32 bit integer) The spatial reference identifier (SRID) for the geography.
GEOGRAPHY structures MUST use SRID values in the range of 4120 through 4999, inclusive, with
the exception of null geographies. A value of -1 indicates a null geography. When a null geography

is indicated, all other fields are omitted. Default SRID for GEOGRAPHY instances is 4326. Default
SRID for GEOMETRY instances is zero (0). For GEOMETRY instance, SRID can be any value: SRID

is not constrained.

Version (1 byte): The version of the GEOGRAPHY structure.<3>

Serialization Properties (1 byte): A bit field that contains individual bit flags that indicate which
optional content is present in the structure, as well as other attributes of the geography. The first

3 bits of the serialization properties are reserved for future use.

0

1

2

3

4

5

6

7

0 0 0 L P V M Z

Where the bits are defined as:

Value Description

Z

(0x01)

The structure has Z values.

M

(0x02)

The structure has M values.

V

(0x04)

Geography is valid.

For GEOGRAPHY structures, V in version 1 is always set.

P

(0x08)

Geography contains a single point. When P is set, Number of Points, Number of Figures, and
Number of Shapes are implicitly assumed to be equal to 1 and are omitted from the structure.
In addition, Figures is implicitly assumed to contain one figure representing a Stroke with a

Point Offset of 0 (zero). Lastly, Shape is implicitly assumed to contain one shape of type Point,
with a Figure Offset of 0 (zero) and without any parents (Parent Offset set to -1). This is an
optimization for the common case of a single point.

L

(0x10)

Geography contains a single line segment. When L is set, Number of Points is implicitly assumed
to be equal to 2 and does not explicitly appear in the serialized data. Number of Figures and
Number of Shapes are implicitly assumed to be equal to 1 and do not explicitly appear in the
serialized data. In addition, Figures is implicitly assumed to contain one stroke figure (0x01) with
a Point Offset of 0 (zero). Lastly, Shape is implicitly assumed to contain one shape of type 0x02
(LineString), with a Figure Offset of 0 and without any parents (Parent Offset set to -1).

P and L are mutually exclusive properties.

11 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Number of Points (optional, unsigned) (4 bytes): The number of points in the GEOGRAPHY
structure. This MUST be a positive number or 0 (zero). If either the P or L bit is set in the

Serialization Properties bit field, this field is omitted from the structure.

Points (optional, variable) (16 * Number of Points bytes) (variable): A sequence of point

structures. The point coordinates are contained in GEOGRAPHY POINT structures in
GEOGRAPHY structures. Likewise, coordinates are contained in GEOMETRY POINT structures in
GEOMETRY structures. Both structures contain a pair of doubles.

If neither the P nor L bit is set in the Serialization Properties bit field, there will be Number of
Points points in the sequence. If the P bit is set, there will be one point. If the L bit is set, there
will be two points.

Z Values (optional, 8 * Number of Points bytes) (variable): A sequence of double values for the

Z value of each point. If the Z bit is set, there will be Number of Points doubles in the array. If a
Z value for an individual point is NULL, it is represented by QNaN [IEEE754].

M Values (optional, 8 * Number of Points bytes) (variable): A sequence of double values for the

M value of each point. If the M bit is set, there will be Number of Points doubles in the array. If
an M value for an individual point is NULL, it is represented as QNaN.

Number of Figures (optional, unsigned) (4 bytes): The number of figures in the structure. This

MUST be a positive number or 0 (zero).

Figures (optional, 5 * Number of Figure bytes) (variable): A sequence of figure structures.

Number of Shapes (optional, unsigned) (4 bytes): The number of shapes in the structure. This
MUST be a positive number.

Shapes (optional, 9 * Number of Shapes bytes) (variable): A sequence of shape structures.

2.1.2 2.1.2 Basic GEOGRAPHY Structure (Version 2))

Version 2 of the GEOGRAPHY structure is formatted as shown in the following packet diagram. All

double fields contain double-precision floating-point numbers that are 64 bits (8 bytes) long. Integers
and double-precision floating-point numbers are expressed in little-endian format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SRID

Version Serialization Properties Number of Points (optional, unsigned)

... Points (optional, variable) (16 * Number of Points
bytes) (variable)

...

Z Values (optional, 8 * Number of Points bytes) (variable)

...

M Values (optional, 8 * Number of Points bytes) (variable)

...

12 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Number of Figures (optional, unsigned)

Figures (optional, 5 * Number of Figure bytes) (variable)

...

Number of Shapes (optional, unsigned)

Shapes (optional, 9 * Number of Shapes bytes) (variable)

...

Number of Segments (optional)

Segments (optional) (1 * Number of Segments bytes) (variable)

...

SRID (4 bytes): (32 bit integer) The SRID for the geography. GEOGRAPHY structures MUST use
SRID values in the range of 4120 through 4999, inclusive, with the exception of null geographies.
A value of -1 indicates a null geography. When a null geography is indicated, all other fields are

omitted. Default SRID for GEOGRAPHY instances is 4326. Default SRID for GEOMETRY instances is
zero (0). For GEOMETRY instance, SRID can be any value: SRID is not constrained.

Version (1 byte): The version of the GEOGRAPHY structure.<4>

Serialization Properties (1 byte): A bit field that contains individual bit flags that indicate which
optional content is present in the structure as well as other attributes of the geography. The first 3
bits of the serialization properties are reserved for future use.

0

1

2

3

4

5

6

7

0 0 H L P V M Z

Where the bits are defined as:

Value Description

Z

(0x01)

The structure has Z values.

M

(0x02)

The structure has M values.

V

(0x04)

Geography is valid. For GEOGRAPHY structures, V in version 2 is always set.

P

(0x08)

Geography contains a single point. When P is set, Number of Points, Number of Figures, and
Number of Shapes are implicitly assumed to be equal to 1 and are omitted from the structure. In
addition, Figures is implicitly assumed to contain one figure representing a Stroke with a Point Offset
of 0 (zero). Lastly, Shape is implicitly assumed to contain one shape of type Point, with a Figure
Offset of 0 (zero) and without any parents (Parent Offset set to -1). This is an optimization for the
common case of a single point.

13 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Value Description

L

(0x10)

Geography contains a single line segment. When L is set, Number of Points is implicitly assumed to be
equal to 2 and does not explicitly appear in the serialized data. Number of Figures and Number of
Shapes are implicitly assumed to be equal to 1 and do not explicitly appear in the serialized data. In
addition, Figures is implicitly assumed to contain one stroke figure (0x01) with a Point Offset of 0
(zero). Lastly, Shape is implicitly assumed to contain one shape of type 0x02 (LineString), with a
Figure Offset of 0 and without any parents (Parent Offset set to -1).

P and L are mutually exclusive properties.

H

(0x20)

In version 2 of the serialization format, geography is larger than a hemisphere.

Number of Points (optional, unsigned) (4 bytes): The number of points in the GEOGRAPHY

structure. This MUST be a positive number or 0 (zero). If either the P or L bit is set in the
Serialization Properties bit field, this field is omitted from the structure.

Points (optional, variable) (16 * Number of Points bytes) (variable): A sequence of point

structures. The point coordinates are contained in GEOGRAPHY POINT structures in
GEOGRAPHY structures. Likewise, coordinates are contained in GEOMETRY POINT structures in
GEOMETRY structures. Both structures contain a pair of doubles.

If neither the P nor L bit is set in the Serialization Properties bit field, there will be Number of

Points points in the sequence. If the P bit is set, there will be one point. If the L bit is set, there
will be two points.

Z Values (optional, 8 * Number of Points bytes) (variable): A sequence of double values for the
Z value of each point. If the Z bit is set, there will be Number of Points doubles in the array. If a
Z value for an individual point is NULL, it is represented by QNaN [IEEE754].

M Values (optional, 8 * Number of Points bytes) (variable): A sequence of double values for the
M value of each point. If the M bit is set, there will be Number of Points doubles in the array. If

an M value for an individual point is NULL, it is represented by QNaN.

Number of Figures (optional, unsigned) (4 bytes): The number of figures in the structure. This
MUST be a positive number or 0 (zero).

Figures (optional, 5 * Number of Figure bytes) (variable): A sequence of figure structures.

Number of Shapes (optional, unsigned) (4 bytes): The number of shapes in the structure. This
MUST be a positive number.

Shapes (optional, 9 * Number of Shapes bytes) (variable): A sequence of shape structures.

Number of Segments (optional) (4 bytes): In version 2 of the serialization format, the number of
segments in the structure. This MUST be a positive number.

Segments (optional) (1 * Number of Segments bytes) (variable): In version 2 of the
serialization format, a sequence of segment structures.

2.1.3 2.1.3 FIGURE Structure

The FIGURE structure defines the partitions in the Points, Z Values, and M Values sequences for
each constituent of the simple feature represented by the geography. A simple feature may have more
than one part, whereas the collection of simple feature types may contain more than one simple
feature.

14 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Figures Attribute (byte) Point Offset (32-bit integer)

...

Figures Attribute (byte) (1 byte): Determines the role of this figure within the GEOMETRY
structure.

In version 1 of the serialization format, valid values are as follows:

  0 (0x00): Figure is an interior ring in a polygon. Interior rings represent holes in

exterior rings.

  1 (0x01): Figure is a stroke. A stroke is a point or a line.

  2 (0x02): Figure is an exterior ring in a polygon. An exterior ring represents the outer

boundary of a polygon.

In version 2 of the serialization format, valid values are as follows:

  0 (0x00): Figure is a point.

  1 (0x01): Figure is a line.

  2 (0x02): Figure is an arc.

  3 (0x03): Figure is a composite curve, that is, it contains both line and arc segments.

The order of the coordinates in each ring of a geography polygon (but not a geometry polygon) is
important. The outer rings for polygons are constructed by using the "left-hand" rule to determine
the interior region of a polygon shape. Thus, outer polygon rings have their GEOGRAPHY POINT
coordinate pairs ordered in a counter-clockwise direction. Polygon holes are constructed by using

the "right-hand" rule. Thus, the GEOGRAPHY POINT coordinate pairs of a polygon holes are
ordered in a clockwise direction.

Point Offset (32-bit integer) (4 bytes): The offset to the FIGURE structure’sstructure's first point
in the Points, Z Values, and M Values sequences.

2.1.4 2.1.4 SHAPE Structure

The SHAPE structure identifies each simple feature contained in the GEOGRAPHY structure. It links

together the simple feature type, the figure that represents it, and the parent simple feature that
contains the present simple feature (if there is one).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Parent Offset (32-bit integer)

Figure Offset (32-bit integer)

OpenGIS Type (1 byte)

15 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Parent Offset (32-bit integer) (4 bytes): The offset to the SHAPE structure’sstructure's parent
(containing) shape in the Shapes sequence if the shape has a parent, such as an outer ring if a

hole, or a multipart simple feature.

Figure Offset (32-bit integer) (4 bytes): The offset to the SHAPE structure’sstructure's Figure in

the Figures sequence.

OpenGIS Type (1 byte) (1 byte): The type of simple feature represented by the SHAPE structure.

In version 1 of the serialization format, valid values are as follows:

  1 (0x01): Point

  2 (0x02): LineString

  3 (0x03): Polygon

  4 (0x04): MultiPoint

  5 (0x05): MultiLineString

  6 (0x06): MultiPolygon

  7 (0x07): GeometryCollection

Version 2 of the serialization format adds the following valid values:

  8 (0x08): CircularString

  9 (0x09): CompoundCurve

  10 (0x0A): CurvePolygon

  11 (0x0B): FullGlobe

2.1.5 2.1.5 GEOGRAPHY POINT Structure

The GEOGRAPHY POINT structure contains latitude and longitude coordinates as double values
representing a point located on a spheroid.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Latitude (double)

...

Longitude (double)

...

Latitude (double) (8 bytes): The GEOGRAPHY POINT structure’sstructure's latitude.

Longitude (double) (8 bytes): The GEOGRAPHY POINT structure’sstructure's longitude.

The following rules apply to the structure's latitude and longitude coordinates:

  The example structure that is provided in this section uses the Well-Known Text (WKT)

protocol that is described in [OGCSFS] section 7.

16 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

  Latitude and longitude coordinates are stored as decimal degree values. Negative

values are used to designate south latitude and west longitude values.

  Latitude values MUST be between -90 and 90 degrees, inclusive.

  Longitude values MUST be between -15069 and 15069 degrees, inclusive.

  Latitude and Longitude values MUST NOT contain Infinity or NaN [IEEE754].

2.1.6 2.1.6 GEOMETRY POINT Structure

The GEOMETRY POINT structure contains x-coordinates and y-coordinates as double values
representing a point located on a plane.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X Coordinate (double)

...

Y Coordinate (double)

...

X Coordinate (double) (8 bytes): The GEOMETRY POINT structure's x-coordinate.

Y Coordinate (double) (8 bytes): The GEOMETRY POINT structure's y-coordinate.

The following rules apply to the structure's x and y coordinates:

  X Coordinate and Y Coordinate values MUST NOT contain Infinity or NaN.

  The example structure that is provided in this section uses the Well-Known Text (WKT)

protocol that is described in [OGCSFS].

2.1.7 2.1.7 SEGMENT Structure

In version 2 of the serialization format, the SEGMENT structure defines the structure of a compound
curve figure. It contains only one byte, which represents type of the segment. Segments are stored
only for figures whose Figure Attribute value is 0x03.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Segment Type

Segment Type (1 byte): Determines the type of the segment within the figure.

Valid values are as follows:

  0 (0x00): Segment is a line.

  1 (0x01): Segment is an arc.

  2 (0x02): Segment is a first line.

17 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

  3 (0x03): Segment is a first arc.

The first line and first arc segments mark the start of the sequence of segments of the same type,

which are line and arc respectively. Subsequent segments have types line and arc.

2.2 2.2 HIERARCHYID Structure

2.2.1 2.2.1 Logical Definition

A hierarchy tree is an abstract ordered tree. This means that for each node n, there is a "less-than"
(<) order relation on all children of n. This tree has infinite depth. For each node n in the tree, the
children of n are in 1-to-1 correspondence with finite nonempty sequences of integers, which are
called node labels. Given any two children m1 and m2 of n, m1 < m2 if and only if the label of m1
comes before the label of m2 in the lexicographical order in integer sequences. Thus, for a node n,
each child of n has siblings before and after it, and any two children of n have siblings between them.

The logical representation of a node label for a child of a given node is a sequence of integers

separated by dots (for example, 1, 1.3, or -7.0.-8.9). The hierarchyid<5> data type logically
encodes information about a single node in the hierarchy tree by encoding the path from the root of
the tree to the node. Such a path is logically represented as a sequence of node labels of all children
visited after the root. Each label is followed by a slash, and a slash begins the representation. Thus, a
path that visits only the root is represented by a single slash. For example, /, /1/, /0.3.-7/, /1/3/, and

/0.1/0.2/ are valid hierarchyid paths of lengths 1, 2, 2, 3, and 3, respectively.

The hierarchyid data type represents a node in the hierarchy tree based on a binary encoding of the
following logical representation. This encoding is described in section 3.2.

2.2.2 2.2.2 Physical Representation

The logical representation of a node in the hierarchy tree is encoded into a sequence of bits according
to the following representation:

L0 O0 F0 Li Oi Fi . . . Lk Ok Fk W

In the preceding diagram, each L/O pair encodes one integer in the logical representation of the node;

each Fi is a single bit that is 0 (zero) if the integer is followed by a dot in the logical representation,
and 1 if it is followed by a slash. W is a string of 0 to 7 bits, padding the representation to the nearest
byte; all bits in W have value 0.

In the following text, each Li/Oi/Fi triple is referred to as a level. If Fi is 0 (zero), the level is said to be
fake; otherwise, it is said to be real.

Li/Oi pairs encode an integer according to the following description. If the ith integer in the logical
representation of the node is n, the Li/Oi pair encodes n for real levels and n+1 for fake levels. This is

done so that, in varbinary (variable-length binary data) comparisons, fake levels compare above real
levels.

Each Li prefix of an Li/Oi pair specifies a range of integers and a bit size for the following Oi field, as

shown in the following table. Each Oi field has some antiambiguity bits that are always of a fixed value
for a particular Li value. These bits are used to enable unambiguous backward parsing of the
representation. The third column in the table shows the format of Li/Oi pair with antiambiguity bits in

the Oi field, with all other bits of the Oi field shown as dots.

The actual value of the integer encoded is the value of the Oi field (ignoring antiambiguity bits and
interpreting the rest of the bits as an unsigned integer) added to the lower limit of the range
corresponding to the Li field.

18 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Li

Bit size of Oi
(without/with
antiambiguity bits) Full format of the Li/Oi pair Range

000100 48/53 000100..............0.....................0......0...0.1... -281479271682120 to
-4294971465

000101 32/36 000101...................0......0...0.1... -4294971464 to -4169

000110 12/15 000110.....0...0.1... -4168 to -73

0010 6/8 0010..0.1... -72 to -9

00111 3/3 00111... -8 to -1

01 2/2 01.. 0 to 3

100 2/2 100.. 4 to 7

101 3/3 101... 8 to 15

110 6/8 110..0.1... 16 to 79

1110 10/13 1110...0...0.1... 80 to 1103

11110 12/15 11110.....0...0.1... 1104 to 5199

111110 32/36 111110...................0......0...0.1... 5200 to 4294972495

111111 48/53 111111..............0.....................0......0...0.1... 4294972496 to
281479271683151

No integer outside of the range -281479271682120 − 281479271683119 can be represented in this
encoding.

Also, note that the encoding used in the hierarchyid data type is limited to 892 bytes. Consequently,

nodes that have too many levels in their representation to fit into 892 bytes cannot be represented by
the hierarchyid data type.

The encoding for the root node is a binary string of length 1. Thus, there is one level and no W field.

Note The encoding represented in the preceding table has three useful properties:

  It is parsable. That is, for any binary string, there is at most one interpretation of it as a

sequence of Li/Oi/Fi triples, and there is an efficient parsing algorithm.

  The representation is also parsable backward (that is, starting from the last byte). This

enables an algorithm to determine a node’snode's parent without having to parse the entire binary
string.

  Comparing two encodings by lexicographical binary comparison is equivalent to conducting

depth-first comparisons on the corresponding tree nodes.

2.3 2.3 CLR UDTs

This section describes the binary format of common language runtime (CLR) user-defined types
(UDTs).

Two serialization formats affect the binary format of a CLR UDT:

  Native UDT serialization is designed for simple CLR UDTs that have a simple structure and use

only a certain set of simple primitive types.

19 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

  User-defined UDT serialization is more flexible and lets the user define complex and dynamic

CLR UDTs. For more information, see [MSDN-UDTR].

2.3.1 2.3.1 Native UDT Serialization

Native user-defined type (UDT) serialization is designed to simplify the serialization of simple common
language runtime (CLR) UDTs. Therefore, CLR UDTs that use native UDT serialization have to adhere
to certain limitations, as specified in this section.

All primitive fields MUST be of one of the following types:

  BOOL

  BYTE

  SBYTE

  USHORT

  SHORT

  UINT

  INT

  ULONG

  LONG

  FLOAT

  DOUBLE

  SqlByte

  SqlInt16

  SqlInt32

  SqlInt64

  SqlBoolean

  SqlSingle

  SqlDouble

  SqlDateTime

  SqlMoney

CLR UDTs that use native UDT serialization can contain nested structures. Fields defined by these

nested structures must adhere to the same limits that apply to fields of CLR UDTs that use native UDT
serialization.

The binary format of a CLR UDT that uses native UDT serialization is defined by all of the UDT’sUDT's

fields, in the order in which they are defined by the user. The format of each field depends on its type.

20 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

2.3.1.1 2.3.1.1 Binary Format of Each Byte

Each data type that is formatted by using native user-defined type (UDT) serialization consists of a
series of bytes. Each byte is formatted as 8 bits representing the byte value in binary representation

in a little-endian bit ordering (formatting all bits in order of their significance, starting with the least
significant bit and ending with the most significant bit).

2.3.1.2 2.3.1.2 Binary Format of Primitive Types

  BOOL values are represented as a single byte. Depending on the BOOL value, the byte takes

one of the following two values: 0x01 for True or 0x00 for False.

  BYTE values are represented as a single byte.

  SBYTE values are represented as a single byte, but the most significant bit is reversed from 0

(zero) to 1 or from 1 to 0.

  USHORT values are represented as 2 bytes. The most significant byte is first, followed by the

least significant byte.

  SHORT values are represented as 2 bytes. The most significant byte is first, and it has the

most significant bit reversed from 0 (zero) to 1 or from 1 to 0. It is followed by the least
significant byte.

  UINT values are represented as 4 bytes, in the order of their significance, starting with the

most significant byte and ending with the least significant byte.

  INT values are represented as 4 bytes, in the order of their significance, starting with the

most significant byte and ending with the least significant byte. The most significant byte has the
most significant bit reversed from 0 (zero) to 1 or from 1 to 0.

  ULONG values are represented as 8 bytes, in the order of their significance, starting with the

most significant byte and ending with the least significant byte.

  LONG values are represented as 8 bytes, in the order of their significance, starting with the

most significant byte and ending with the least significant byte. The most significant byte has the
most significant bit reversed, from 0 (zero) to 1 or from 1 to 0.

  FLOAT values are represented as defined by 4-byte, [IEEE754] single-precision, floating-point

format, but the order of the bytes is reversed.

For positive values (including positive 0 (zero)), the most significant bit of the first byte is
reversed from 0 (zero) to 1.

For negative values, all bits of all bytes are reversed, from 0 (zero) to 1 or from 1 to 0.

For negative 0 (zero), all bits remain unchanged.

  DOUBLE values are represented as defined by 8-byte, double-precision, floating-point format,

but the order of the bytes is reversed.

For positive values (including positive 0 (zero), the most significant bit of the first byte is

reversed, from 0 (zero) to 1.

For negative values, all bits of all bytes are reversed, from 0 (zero) to 1 or from 1 to 0.

For negative 0 (zero), all bits remain unchanged.

  SqlByte values are represented as 2 bytes. The first byte is a BOOL value that indicates

whether or not the SqlByte value is NULL (True indicates that this value is not NULL; False

21 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

indicates that it is NULL). The second byte is the actual BYTE value representing the SqlByte
value.

  SqlInt16 values are represented as 3 bytes. The first byte is a BOOL value that indicates

whether or not the SqlInt16 value is NULL (True indicates that this value is not NULL; False
indicates that it is NULL). The other 2 bytes are the actual SHORT value representing the
SqlInt16 value.

  SqlInt32 values are represented as 5 bytes. The first byte is a BOOL value that indicates

whether or not the SqlInt32 value is NULL (True indicates that this value is not NULL; False
indicates that it is NULL). The other 4 bytes are the actual INT value representing the SqlInt32
value.

  SqlInt64 values are represented as 9 bytes. The first byte is a BOOL value that indicates

whether or not the SqlInt64 value is NULL (True indicates that this value is not NULL; False
indicates that it is NULL). The other 8 bytes are the actual LONG value representing the SqlInt64
value.

  SqlBoolean values are represented as a single byte. Depending on the value of SqlBoolean,

this byte can have any of the following three values: 0x00 for NULL, 0x01 for False, or 0x02 for
True.

  SqlSingle values are represented as 5 bytes. The first byte is a BOOL value that indicates

whether or not the SqlSingle value is NULL (True indicates that this value is not NULL; False
indicates that it is NULL). The other 4 bytes are the actual FLOAT value representing the
SqlSingle value.

  SqlDouble values are represented as 9 bytes. The first byte is a BOOL value that indicates

whether or not the SqlDouble value is NULL (True indicates that this value is not NULL; False
indicates that it is NULL). The other 8 bytes are the actual DOUBLE value representing the
SqlDouble value.

  SqlDateTime values are represented as 9 bytes. The first byte is a BOOL value that indicates

whether or not the SqlDateTime value is NULL (True indicates that this value is not NULL; False

indicates that it is NULL). The next 4 bytes are an INT value representing the date as the number
of days elapsed since 1/1/1900 (for dates before 1/1/1900, this will be a negative value). The final
4 bytes are an INT value representing the number of ticks elapsed since midnight of the day
represented by the date part. The following rules can be used to calculate the number of elapsed
ticks from the number of elapsed milliseconds:

Each second consists of 300 ticks. All ticks represent values with the number of milliseconds
ending in 0, 3, or 7. For example: 000, 003, 007, 010, 013, 017, 020, …, 990, 993, 997.

The valid range for SqlDateTime values is from 1753-1-1 00:00:00.000 through 9999-12-31
23:59:59.997.

  SqlMoney values are represented as 9 bytes. The first byte is a BOOL value that indicates

whether or not the SqlMoney value is NULL (True indicates that this value is not NULL; False
indicates that it is NULL). The other 8 bytes are a LONG value representing the SqlMoney value
multiplied by 10000.

2.3.1.3 2.3.1.3 Nested Structures

Common language runtime (CLR) user-defined types (UDTs) that use native UDT serialization can
include nested structures. Nested structures are also created by the user and are represented by
formatting all their fields in the order in which they are defined by the user who created the nested

structure. The knowledge of the definition of the nested structure is necessary to decode it—the
serialization format only contains the serialized data of the nested structure, but not the definition of
the structure itself.

22 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

2.3.2 2.3.2 User-Defined UDT Serialization

User-defined user-defined type (UDT) serialization is used when native UDT serialization does not
provide enough flexibility to express more complex and dynamic structures. The user-defined

approach lets users implement their own serialization formats by using types defined in .NET
Remoting Binary Format.

For more details about .NET Remoting Binary Format, see [MS-NRBF].

23 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

3 3 Structure Examples

3.1 3.1 GEOGRAPHY and GEOMETRY Structure Examples

The following examples illustrate how a selection of simple features is represented in the structures

defined in this document.

3.1.1 3.1.1 Example of an Empty Point Structure

POINT EMPTY is designed to handle a non-null condition when a function returns an empty set. This

may occur, for instance, when two disjoint spatial features are intersected.

POINT EMPTY is represented by the following binary string:

 0x00000000 01 04 00000000 00000000 01000000 FFFFFFFF FFFFFFFF 01

This string is interpreted as shown in the following table.

Binary value Description

00000000 SRID = 0

01 Version = 1

04 Serialization Properties = V (is valid)

00000000 Number of Points = 0 (no points)

00000000 Number of Figures = 0 (no figures)

01000000 Number of Shapes = 1

FFFFFFFF 1st Shape Parent Offset = -1 (no parent)

FFFFFFFF 1st Shape Figure Offset = -1 (no figure)

01 1st Shape OpenGIS Type = 1 (point)

3.1.2 3.1.2 Example of a Geometry Point Structure

POINT(5 10) holds a 0-dimension feature that represents a point location. The following figure shows
a geometry point feature located at the intersection of 5 on the x-axis and 10 on the y-axis (the actual
point is surrounded by a circular symbol to make it easier to see).

Figure 11:: A geometry point

POINT (5 10) in SRID 4326 is represented by the following binary string:

24 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

 0xE6100000 01 0C 0000000000001440 0000000000002440

This string is interpreted as shown in the following table.

Binary value Description

E6100000 SRID = 4326

01 Version = 1

0C Serialization Properties = V + P (geometry is valid, single point)

0000000000001440 X = 5

0000000000002440 Y = 10

3.1.3 3.1.3 Example of a Linestring Structure

LINESTRING is an ordered series of connected points. LINESTRING (0 1 1, 3 2 2, 4 5 NULL) contains a
Z value for each point location, with the last Z value being NULL. The following figure represents the x
and y coordinates only for a geometry type.

Figure 22:: A geometry linestring

LINESTRING (0 1 1, 3 2 2, 4 5 NULL) is represented by the following binary string:

0xE6100000 01 05 03000000 0000000000000000 000000000000F03F 0000000000000840

0000000000000040 0000000000001040 0000000000001440 000000000000F03F
0000000000000040 000000000000F8FF 01000000 01 00000000 01000000 FFFFFFFF 00000000 02

This string is interpreted as shown in the following table.

Binary value Description

E6100000 SRID = 4326

01 Version = 1

25 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Binary value Description

05 Serialization Properties = V + Z (geometry is valid, has Z values)

03000000 Number of Points = 3

0000000000000000 1st point X = 0

000000000000F03F 1st point Y = 1

0000000000000840 2nd point X = 3

0000000000000040 2nd point Y = 2

0000000000001040 3rd point X = 4

0000000000001440 3rd point Y = 5

000000000000F03F 1st point Z = 1

0000000000000040 2nd point Z= 2

000000000000F8FF 3rd point Z = QNaN

01000000 Number of Figures = 1

01 1st Figure Attribute = 1 (stroke)

00000000 1st Figure Point Offset = 0 (figure starts with 1st point)

01000000 Number of Shapes = 1

FFFFFFFF 1st Shape Parent Offset = -1 (no parent)

00000000 1st Shape Figure Offset = 0 (shape starts with 1st figure)

02 1st Shape OpenGIS Type = 2 (linestring)

3.1.4 3.1.4 Example of a Geometry Collection Structure

GEOMETRYCOLLECTION is a heterogeneous collection of simple features. The following figure shows a
geography containing a single point, a single linestring, and a polygon with an interior ring (hole).

Figure 33:: A geometry collection containing a point, a linestring, and a polygon with a hole

26 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

GEOMETRYCOLLECTION (POINT (4 0), LINESTRING (4 2, 5 3), POLYGON ((0 0, 3 0, 3 3, 0 3, 0 0), (1
1, 1 2, 2 2, 2 1, 1 1))) is represented by the following binary string:

 0xE6100000 01 04 0D000000
 0000000000000000 0000000000001040 0000000000000040 0000000000001040 0000000000000840
0000000000001440 0000000000000000 0000000000000000 0000000000000000 0000000000000840

0000000000000840 0000000000000840 0000000000000840 0000000000000000 0000000000000000

0000000000000000 000000000000F03F 000000000000F03F 0000000000000040 000000000000F03F

0000000000000040 0000000000000040 000000000000F03F 0000000000000040 000000000000F03F

000000000000F03F

 04000000 01 00000000 01 01000000 02 03000000 00 08000000
 04000000 FFFFFFFF 00000000 07 00000000 00000000 01 00000000 01000000 02
 00000000 02000000 03

This string is interpreted as shown in the following table.

Binary value Description

E6100000 SRID = 4326

01 Version = 1

04 Serialization Properties = V (geography is valid)

0D000000 Number of Points = 13

0000000000000000 1st point latitude = 0

0000000000001040 1st point longitude = 4

0000000000000040 2nd point latitude = 2

0000000000001040 2nd point longitude = 4

0000000000000840 3rd point latitude = 3

0000000000001440 3rd point longitude = 5

0000000000000000 4th point latitude = 0

0000000000000000 4th point longitude = 0

0000000000000000 5th point latitude = 0

0000000000000840 5th point longitude = 3

0000000000000840 6th point latitude = 3

0000000000000840 6th point longitude = 3

0000000000000840 7th point latitude = 3

0000000000000000 7th point longitude = 0

0000000000000000 8th point latitude = 0

0000000000000000 8th point longitude = 0

000000000000F03F 9th point latitude = 1

000000000000F03F 9th point longitude = 1

0000000000000040 10th point latitude = 2

27 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Binary value Description

000000000000F03F 10th point longitude = 1

0000000000000040 11th point latitude = 2

0000000000000040 11th point longitude = 2

000000000000F03F 12th point latitude = 1

0000000000000040 12th point longitude = 2

000000000000F03F 13th point latitude = 1

000000000000F03F 13th point longitude = 1

04000000 Number of Figures = 4

01 1st Figure Attribute = 1 (stroke)

00000000 1st Figure Point Offset = 0 (figure starts with 1st point)

01 2nd Figure Attribute = 1 (stroke)

01000000 2nd Figure Point Offset = 1 (figure starts with 2nd point)

02 3rd Figure Attribute = 2 (exterior polygon ring)

03000000 3rd Figure Point Offset = 3 (figure starts with 4th point)

00 4th Figure Attribute = 0 (interior polygon ring)

08000000 4th Figure Point Offset = 8 (figure starts with 9th point)

04000000 Number of Shapes = 4

FFFFFFFF 1st Shape Parent Offset = -1 (no parent)

00000000 1st Shape Figure Offset = 0 (shape starts with 1st figure)

07 1st Shape OpenGIS Type = 7 (GeometryCollection)

00000000 2nd Shape Parent Offset = 0 (parent shape is 1st shape)

00000000 2nd Shape Figure Offset = 0 (shape starts with 1st figure)

01 2nd Shape OpenGIS Type = 1 (Point)

00000000 3rd Shape Parent Offset = 0 (parent shape is 1st shape)

01000000 3rd Shape Figure Offset = 1 (shape starts with 2nd figure)

02 3rd Shape OpenGIS Type = 2 (LineString)

00000000 4th Shape Parent Offset = 0 (parent shape is 1st shape)

02000000 4th Shape Figure Offset = 2 (shape starts with 3rd figure)

03 4th Shape OpenGIS Type = 3 (Polygon)

28 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

3.1.5 3.1.5 Example of an Object Serialized in Version 2

In version 2 of the serialization format, this CURVEPOLYGON instance is a surface whose boundary is a
curve. In this example, the curve is COMPOUNDCURVE.

Figure 44:: A curve polygon hole

CURVEPOLYGON(COMPOUNDCURVE((0 0, 0 2, 2 2), CIRCULARSTRING (2 2, 1 0, 0 0))) is represented
by the following binary string:

 E6100000 02 24 05000000
 0000000000000000 0000000000000000 0000000000000040 0000000000000000 0000000000000040
0000000000000040 0000000000000000 000000000000F03F 0000000000000000 0000000000000000

 01000000 03 00000000
 01000000 FFFFFFFF 00000000 0A
 03000000 02 00 03

This string is interpreted as shown in the following table.

Binary value Description

E6100000 SRID = 4326

02 Version = 2

24 Serialization Properties = VH (geography which is valid and larger than a hemisphere)

05000000 Number of Points = 5

29 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Binary value Description

0000000000000000 1st point latitude = 0

0000000000000000 1st point longitude = 0

0000000000000040 2nd point latitude = 2

0000000000000000 2nd point longitude = 0

0000000000000040 3rd point latitude = 2

0000000000000040 3rd point longitude = 2

0000000000000000 4th point latitude = 0

000000000000F03F 4th point longitude = 1

0000000000000000 5th point latitude = 0

0000000000000000 5th point longitude = 0

01000000 Number of Figures = 1

03 1st Figure Attribute = 3 (compound curve)

00000000 1st Figure Point Offset = 0 (figure starts with 1st point)

01000000 Number of Shapes = 1

FFFFFFFF 1st Shape Parent Offset = -1 (no parent)

00000000 1st Shape Figure Offset = 0 (shape starts with 1st figure)

0A 1st Shape OpenGIS Type = 10 (CurvePolygon)

03000000 Number of Segments = 3

02 1st Segment Segment Type = 2 (First Line)

00 2nd Segment Segment Type = 0 (Line)

03 3rd Segment Segment Type = 3 (First Arc)

3.2 3.2 HIERARCHYID Examples

The root node is represented by a HIERARCHYID structure.

Example 1

The first child of the root node, with a logical representation of /1/, is represented as the following bit

sequence:

01011000

The first two bits, 01, are the L1 field, meaning that the first node has a label between 0 (zero) and 3.

The next two bits, 01, are the O1 field and are interpreted as the integer 1. Adding this to the
beginning of the range specified by the L1 yields 1. The next bit, with the value 1, is the F1 field,
which means that this is a "real" level, with 1 followed by a slash in the logical representation. The
final three bits, 000, are the W field, padding the representation to the nearest byte.

30 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Example 2

As a more complicated example, the node with logical representation /1/-2.18/ (the child with label -

2.18 of the child with label 1 of the root node) is represented as the following sequence of bits (a
space has been inserted after every grouping of 8 bits to make the sequence easier to follow):

01011001 11111011 00000101 01000000

The first three fields are the same as in the first example. That is, the first two bits (01) are the L1
field, the second two bits (01) are the O1 field, and the fifth bit (1) is the F1 field. This encodes the
/1/ portion of the logical representation.

The next 5 bits (00111) are the L2 field, so the next integer is between -8 and -1. The following 3 bits
(111) are the O2 field, representing the offset 7 from the beginning of this range. Thus, the L2 and O2
fields together encode the integer -1. The next bit (0) is the F2 field. Because it is 0 (zero), this level

is fake, and 1 has to be subtracted from the integer yielded by the L2 and O2 fields. Therefore, the L2,
O2, and F2 fields together represent -2 in the logical representation of this node.

The next 3 bits (110) are the L3 field, so the next integer is between 16 and 79. The subsequent 8

bits (00001010) are the L4 field. Removing the anti-ambiguity bits from there (the third bit (0) and
the fifth bit (1)) leaves 000010, which is the binary representation of 2. Thus, the integer encoded by
the L3 and O3 fields is 16+2, which is 18. The next bit (1) is the F3 field, representing the slash (/)

after the 18 in the logical representation. The final 6 bits (000000) are the W field, padding the
physical representation to the nearest byte.

3.3 3.3 CLR UDT Serialization Example

The following example of a common language runtime (CLR) user-defined type (UDT) contains all the

primitive types that are described in this document. The CLR UDT is defined in the C# programming
language as follows.

 [SqlUserDefinedType(Format.Native)]
 public struct SampleNativeUdt : INullable
 {
 public bool BoolValue;
 public byte ByteValue;
 public sbyte SByteValue;
 public short ShortValue;
 public ushort UShortValue;
 public int IntValue;
 public uint UIntValue;
 public long LongValue;
 public ulong ULongValue;
 public float FloatValue;
 public double DoubleValue;
 public SqlByte SqlByteValue;
 public SqlInt16 SqlInt16Value;
 public SqlInt32 SqlInt32Value;
 public SqlInt64 SqlInt64Value;
 public SqlDateTime SqlDateTimeValue;
 public SqlSingle SqlSingleValue;
 public SqlDouble SqlDoubleValue;
 public SqlMoney SqlMoneyValue;
 public SqlBoolean SqlBooleanValue;

 // Implementation methods
 }

In the preceding example, the CLR UDT’sUDT's fields are initialized with the following values.

 BoolValue = true;

31 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

 ByteValue = 1;
 SByteValue = -2;
 ShortValue = 3;
 UShortValue = 4;
 IntValue = -5;
 UIntValue = 6;
 LongValue = 7;
 ULongValue = 8;
 FloatValue = 1.234568E+08;
 DoubleValue = 123456789.0123456;
 SqlByteValue = 9;
 SqlInt16Value = -10;
 SqlInt32Value = 11;
 SqlInt64Value = 12;
 SqlDateTimeValue = "1/1/2000 12:00:00";
 SqlSingleValue = 1.234568E+08;
 SqlDoubleValue = 123456789.0123456;
 SqlMoneyValue = "$13";
 SqlBooleanValue = true;

Binary formatting of this CLR UDT produces the following stream of bytes in hexadecimal notation.
Anything after “--""--" is a comment intended to improve the readability of this example and is not
part of the binary format for this CLR UDT.

 01 -- bool true
 01 -- byte 1
 7E -- sbyte -2
 8003 -- short 3
 0004 -- ushort 4
 7FFFFFFB -- int -5
 00000006 -- uint 6
 8000000000000007 -- long 7
 0000000000000008 -- ulong 8
 CCEB79A3 -- float 123456789.0123456789
 3E6290CBABF35BA7 -- double -123456789.0123456789
 0109 -- SqlByte [bool true, byte 9]
 017FF6 -- SqlInt16 [bool true, short -10]
 018000000B -- SqlInt32 [bool true, int 11
 01800000000000000C -- SqlInt64 [bool true, long 12]
 0180008EAC80C5C100 -- SqlDateTime [bool true, int 36524 days since 1/1/1900, int 12960000
ticks since midnight]

 013314865C -- SqlSingle [bool true, float 1.234568E+08]
 01C19D6F34540CA458 -- SqlDouble [bool true, double 123456789.0123456]
 01800000000001FBD0 -- SqlMoney [bool true, long 130000]
 02 -- SqlBoolean true

32 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

4 4 Security Considerations

None.

33 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

5 5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:.

  Microsoft SQL Server 2008 R2

  Microsoft SQL Server 2012

  Microsoft SQL Server 2014

 Microsoft SQL Server 2016

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.6: The following table lists versions of the serialization format for GEOGRAPHY and
GEOMETRY structures and the products to which those versions apply.

Serialization format Applicable product

Version 1
  SQL Server 2008 R2

  SQL Server 2012

  SQL Server 2014

 SQL Server 2016

Version 2
  SQL Server 2012

  SQL Server 2014

 SQL Server 2016

<2> Section 2.1: Microsoft SQL Server supports four building elements, except for SQL Server 2008
R2, which supports three building elements, and SQL Server 2012 and SQL Server 2014 support four

building elements.

<3> Section 2.1.1: In Microsoft implementations, a value set to 1 denotes version 1 of the structure

and a value set to 2 denotes version 2 of the structure.

<4> Section 2.1.2: In Microsoft implementations, a value set to 1 denotes version 1 of the structure
and a value set to 2 denotes version 2 of the structure.

<5> Section 2.2.1: Microsoft implementations do not produce values outside the range

00:00:00.0000000 through 23:59:59.9999999 but will accept values outside the range as described in
section 2.4.2 of [MS-BINXML].

34 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

6 6 Change Tracking

No table of This section identifies changes is available. Thethat were made to this document is either
new or has had no changes since itsthe last release. Changes are classified as New, Major, Minor,
Editorial, or No change.

7 The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.

Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial
changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

35 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Some important terms used in the change type descriptions are defined as follows:

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the

wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable)
and description

Major change
(Y or N)

Change type

1.6 Versioning and
Localization

Added SQL Server 2016 to the
behavior note.

Y
Product behavior
note updated.

5 Appendix A: Product
Behavior

Added SQL Server 2016 to the list of
applicable products.

Y Content update.

36 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

7 Index

A

Applicability 7
Applicability statement 7
7

B

Basic GEOGRAPHY structure 9
9

C

Change tracking 3436

CLR UDT Serialization Example example 30

E

Examples
 CLR UDT Serialization Example 30
 Empty point structure 2324
 GEOGRAPHY and GEOMETRY Structure Examples 23
 GEOGRAPHY structure 2324
 Geometry collection structure 2526
 Geometry point structure 2324
 GEOMETRY structure 2324
 HIERARCHYID Examples 29
 Linestring structure 24
25

F

Fields - vendor-extensible 8
FIGURE packet 1314
FIGURE structure 13
14

G

GEOGRAPHY and GEOMETRY Structure Examples example 23
GEOGRAPHY packet (section 2.1.1 99,, section 2.1.2 1111))
GEOGRAPHY POINT packet 1516
GEOGRAPHY POINT structure 1516
GEOGRAPHY structure 99

GEOMETRY POINT packet 1616
GEOMETRY POINT structure 1616
GEOMETRY structure 99
Glossary 5
5

H

HIERARCHYID examples 2930
HIERARCHYID Examples example 29
HIERARCHYID structure 1717
 Logical definition 1717
 Physical representation 17
18

I

Implementer - security considerations 32
Informative references 66
Introduction 5
5

L

37 / 37

[MS-SSCLRT-Diff] - v20160510
Microsoft SQL Server CLR Types Serialization Formats
Copyright © 2016 Microsoft Corporation
Release: May 10, 2016

Localization 8
7

N

Normative references 6
6

O

Overview 66
Overview (synopsis) 6

P

Product behavior 33
35

R

References 6

 informative 6Informative 5
Normative 5

 normative 6
Relationship to protocols and other structures 7
7

S

Security - implementer considerations 3234
Security considerations 32
SEGMENT packet 1617
SHAPE packet 1415
SHAPE structure 1415
SQL Server versions 35
Structure examples 2324
Structures 99
 FIGURE 1314
 GEOGRAPHY 99
 GEOGRAPHY POINT 1516
 GEOMETRY 99

 GEOMETRY POINT 1616
 SHAPE 14
15

T

Tracking changes 34
36

V

Vendor-extensible fields 88
Versioning 8

7

	1 1 Introduction
	1.1 1.1 Glossary
	1.2 References
	1.2 References
	1.2.1 1.2.1 Normative References
	1.2.2 1.2.2 Informative References

	1.3 Overview
	1.4 1.4 Relationship to Protocols and Other Structures
	1.5 1.5 Applicability Statement
	1.6 1.6 Versioning and Localization
	1.7 1.7 Vendor-Extensible Fields

	2 2 Structures
	2.1 2.1 GEOGRAPHY and GEOMETRY Structures
	2.1.1 2.1.1 Basic GEOGRAPHY Structure (Version 1))
	2.1.2 2.1.2 Basic GEOGRAPHY Structure (Version 2))
	2.1.3 2.1.3 FIGURE Structure
	2.1.4 2.1.4 SHAPE Structure
	2.1.5 2.1.5 GEOGRAPHY POINT Structure
	2.1.6 2.1.6 GEOMETRY POINT Structure
	2.1.7 2.1.7 SEGMENT Structure

	2.2 2.2 HIERARCHYID Structure
	2.2.1 2.2.1 Logical Definition
	2.2.2 2.2.2 Physical Representation

	2.3 2.3 CLR UDTs
	2.3.1 2.3.1 Native UDT Serialization
	2.3.1.1 2.3.1.1 Binary Format of Each Byte
	2.3.1.2 2.3.1.2 Binary Format of Primitive Types
	2.3.1.3 2.3.1.3 Nested Structures

	2.3.2 2.3.2 User-Defined UDT Serialization

	3 3 Structure Examples
	3.1 3.1 GEOGRAPHY and GEOMETRY Structure Examples
	3.1.1 3.1.1 Example of an Empty Point Structure
	3.1.2 3.1.2 Example of a Geometry Point Structure
	3.1.3 3.1.3 Example of a Linestring Structure
	3.1.4 3.1.4 Example of a Geometry Collection Structure
	3.1.5 3.1.5 Example of an Object Serialized in Version 2

	3.2 3.2 HIERARCHYID Examples
	3.3 3.3 CLR UDT Serialization Example

	4 4 Security Considerations
	5 5 Appendix A: Product Behavior
	6 6 Change Tracking
	7 Index

