
1 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

[MS-SSTDS]:

Tabular Data Stream Protocol Version 4.2

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Revision Summary

Date
Revision
History

Revision
Class Comments

8/7/2009 0.1 Major First release.

11/6/2009 0.2 Minor Clarified the meaning of the technical content.

3/5/2010 0.2.1 Editorial Changed language and formatting in the technical content.

4/21/2010 0.2.2 Editorial Changed language and formatting in the technical content.

6/4/2010 0.2.3 Editorial Changed language and formatting in the technical content.

9/3/2010 0.2.3 None
No changes to the meaning, language, or formatting of the
technical content.

2/9/2011 0.3.0 Minor Clarified the meaning of the technical content.

7/7/2011 1.0 Major Updated and revised the technical content.

11/3/2011 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/19/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/23/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/27/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/24/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/29/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/23/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/26/2013 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/11/2013 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

12/5/2013 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2014 2.0 Major Updated and revised the technical content.

5/20/2014 2.0 None No changes to the meaning, language, or formatting of the

3 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Date
Revision
History

Revision
Class Comments

technical content.

5/10/2016 2.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/16/2017 3.0 Major Significantly changed the technical content.

10/16/2019 4.0 Major Significantly changed the technical content.

4 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 9

1.3 Overview .. 9
1.4 Relationship to Other Protocols .. 11
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 11
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 12
1.9 Standards Assignments ... 12

2 Messages ... 13
2.1 Transport .. 13
2.2 Message Syntax ... 13

2.2.1 Client Messages .. 13
2.2.1.1 Pre-Login ... 13
2.2.1.2 Login ... 14
2.2.1.3 SQL Batch .. 14
2.2.1.4 Bulk Load ... 14
2.2.1.5 Remote Procedure Call... 14
2.2.1.6 Attention ... 14
2.2.1.7 Transaction Manager Request ... 14

2.2.2 Server Messages .. 15
2.2.2.1 Pre-Login Response ... 15
2.2.2.2 Login Response... 15
2.2.2.3 Row Data ... 15
2.2.2.4 Return Status ... 16
2.2.2.5 Return Parameters .. 16
2.2.2.6 Response Completion (DONE) ... 16
2.2.2.7 Error and Info Messages .. 16
2.2.2.8 Attention Acknowledgment ... 16

2.2.3 Packets ... 16
2.2.3.1 Packet Header .. 17

2.2.3.1.1 Type .. 17
2.2.3.1.2 Status .. 18
2.2.3.1.3 Length ... 18
2.2.3.1.4 SPID .. 18
2.2.3.1.5 PacketID .. 19
2.2.3.1.6 Window .. 19

2.2.3.2 Packet Data .. 19
2.2.4 Packet Data Token and Tokenless Data Streams ... 19

2.2.4.1 Tokenless Stream ... 20
2.2.4.2 Token Stream ... 20

2.2.4.2.1 Token Definition .. 20
2.2.4.2.1.1 Zero-Length Token (xx01xxxx) .. 20
2.2.4.2.1.2 Fixed-Length Token (xx11xxxx) ... 20
2.2.4.2.1.3 Variable-Length Token (xx10xxxx) ... 21

2.2.4.3 DONE and Attention Tokens ... 21
2.2.4.4 Token Stream Examples .. 22

2.2.4.4.1 Sending a SQL Batch ... 22
2.2.4.4.2 Out-of-Band Attention Signal .. 22

2.2.5 Grammar Definition for Token Description ... 23
2.2.5.1 General Rules ... 23

5 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

2.2.5.1.1 Least Significant Bit Order .. 24
2.2.5.2 Data Stream Types ... 25

2.2.5.2.1 Unknown-Length Data Streams ... 25
2.2.5.2.2 Variable-Length Data Streams .. 25
2.2.5.2.3 Data-Type-Dependent Data Streams .. 26

2.2.5.3 Data Type Definitions .. 26
2.2.5.3.1 Fixed-Length Data Types .. 26
2.2.5.3.2 Variable-Length Data Types .. 27

2.2.5.4 Data Type Details ... 28
2.2.5.4.1 System Data Type Values ... 28

2.2.5.4.1.1 Integers ... 29
2.2.5.4.1.2 Timestamp .. 29
2.2.5.4.1.3 Character and Binary Strings ... 29
2.2.5.4.1.4 Fixed-Point Numbers .. 29
2.2.5.4.1.5 Floating-Point Numbers .. 29
2.2.5.4.1.6 Decimal/Numeric ... 29
2.2.5.4.1.7 GUID .. 30
2.2.5.4.1.8 Date/Times ... 30

2.2.5.5 Type Info Rule Definition .. 30
2.2.5.6 Data Buffer Stream Tokens .. 30

2.2.6 Packet Header Message Type Stream Definition .. 31
2.2.6.1 Bulk Load BCP .. 31
2.2.6.2 Bulk Load Update Text/Write Text ... 33
2.2.6.3 LOGIN ... 33
2.2.6.4 PRELOGIN .. 37
2.2.6.5 RPC Request... 39
2.2.6.6 SQLBatch ... 41
2.2.6.7 SSPI Message ... 41
2.2.6.8 Transaction Manager Request ... 42

2.2.7 Packet Data Token Stream Definition .. 43
2.2.7.1 ALTFMT ... 43
2.2.7.2 ALTNAME ... 45
2.2.7.3 ALTROW .. 46
2.2.7.4 COLINFO .. 47
2.2.7.5 COLFMT ... 48
2.2.7.6 COLNAME ... 50
2.2.7.7 DONE .. 50
2.2.7.8 DONEINPROC ... 52
2.2.7.9 DONEPROC .. 53
2.2.7.10 ENVCHANGE ... 54
2.2.7.11 ERROR ... 55
2.2.7.12 INFO ... 58
2.2.7.13 LOGINACK ... 59
2.2.7.14 OFFSET .. 60
2.2.7.15 ORDER .. 61
2.2.7.16 RETURNSTATUS .. 62
2.2.7.17 RETURNVALUE .. 62
2.2.7.18 ROW ... 64
2.2.7.19 SSPI .. 65
2.2.7.20 TABNAME ... 66

2.3 Directory Service Schema Elements ... 66

3 Protocol Details ... 67
3.1 Common Details .. 67

3.1.1 Abstract Data Model .. 67
3.1.2 Timers .. 67
3.1.3 Initialization ... 67
3.1.4 Higher-Layer Triggered Events ... 67

6 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

3.1.5 Message Processing Events and Sequencing Rules .. 67
3.1.6 Timer Events .. 71
3.1.7 Other Local Events .. 71

3.2 Client Details ... 72
3.2.1 Abstract Data Model .. 72
3.2.2 Timers .. 73
3.2.3 Initialization ... 73
3.2.4 Higher-Layer Triggered Events ... 73
3.2.5 Message Processing Events and Sequencing Rules .. 74

3.2.5.1 Sent Initial PRELOGIN Packet State ... 75
3.2.5.2 Sent TLS/SSL Negotiation Packet State .. 75
3.2.5.3 Sent LOGIN Record State ... 76
3.2.5.4 Sent SSPI Record with SPNEGO Packet State.. 76
3.2.5.5 Logged In State .. 76
3.2.5.6 Sent Client Request State .. 76
3.2.5.7 Sent Attention State .. 77
3.2.5.8 Final State ... 77

3.2.6 Timer Events .. 77
3.2.7 Other Local Events .. 77

3.3 Server Details .. 77
3.3.1 Abstract Data Model .. 78
3.3.2 Timers .. 78
3.3.3 Initialization ... 79
3.3.4 Higher-Layer Triggered Events ... 79
3.3.5 Message Processing Events and Sequencing Rules .. 79

3.3.5.1 Initial State .. 79
3.3.5.2 TLS/SSL Negotiation .. 79
3.3.5.3 Login Ready ... 79
3.3.5.4 SPNEGO Negotiation .. 80
3.3.5.5 Logged In .. 80
3.3.5.6 Client Request Execution .. 80
3.3.5.7 Final State ... 81

3.3.6 Timer Events .. 81
3.3.7 Other Local Events .. 81

4 Protocol Examples ... 82
4.1 Pre-Login Request .. 82
4.2 Login Request .. 83
4.3 Login Response .. 86
4.4 SQL Batch Client Request .. 89
4.5 SQL Batch Server Response .. 90
4.6 RPC Client Request ... 91
4.7 RPC Server Response ... 92
4.8 Attention Request .. 94
4.9 SSPI Message .. 94
4.10 Bulk Load .. 95
4.11 Transaction Manager Request .. 96

5 Security ... 97
5.1 Security Considerations for Implementers ... 97
5.2 Index of Security Parameters .. 97

6 Appendix A: Product Behavior ... 98

7 Change Tracking .. 100

8 Index ... 101

7 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

1 Introduction

The Tabular Data Stream Protocol version 4.2 is an application layer request/response protocol that
facilitates interaction with a database server. This protocol provides for:

 Authentication and channel encryption negotiation.

 Specification of requests in SQL, including bulk insert.

 Invocation of a stored procedure or user-defined function, also known as a remote procedure

call (RPC).

 The return of data.

 Transaction manager requests.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the
memory location with the lowest address.

bulk insert: A method for efficiently populating the rows of a table from the client to the server.

data stream: A stream of data that corresponds to specific Tabular Data Stream (TDS) semantics.
A single data stream can represent an entire TDS message or only a specific, well-defined
portion of a TDS message. A TDS data stream can span multiple network data packets.

Distributed Transaction Coordinator (DTC): A Windows service that coordinates transactions
across multiple resource managers, including databases. For more information, see [MSDN-

DTC].

final state: The application layer has finished the communication, and the lower-layer connection

should be disconnected.

initial state: A prerequisite for application-layer communication. A lower-layer channel that can
provide reliable communication must be established.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

out-of-band: A type of event that happens outside of the standard sequence of events. For

example, an out-of-band signal or message can be sent during an unexpected time and will not
cause any protocol parsing issues.

remote procedure call (RPC): A communication protocol used primarily between client and

server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

Security Support Provider Interface (SSPI): An API that allows connected applications to call
one of several security providers to establish authenticated connections and to exchange data
securely over those connections. It is equivalent to Generic Security Services (GSS)-API, and
the two are on-the-wire compatible.

https://go.microsoft.com/fwlink/?LinkId=89994
https://go.microsoft.com/fwlink/?LinkId=89994
https://go.microsoft.com/fwlink/?LinkId=89824

8 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

SQL batch: A set of SQL statements.

SQL Server User Authentication (SQLAUTH): An authentication mechanism that is used to

support user accounts on a database server that supports SQL. The username and password of
the user account are transmitted as part of the login message that the client sends to the

server.

SQL statement: A character string expression in a language that the server understands.

stored procedure: A precompiled collection of SQL statements and, optionally, control-of-flow
statements that are stored under a name and processed as a unit. They are stored in a SQL
database and can be run with one call from an application. Stored procedures return an integer
return code and can additionally return one or more result sets. Also referred to as sproc.

table response: A collection of data, all formatted in a specific manner, that is sent by the server

to the client for the purpose of communicating the result of a client request. The server returns
the result in a table response format for LOGIN7, SQL, and remote procedure call (RPC)
requests.

TDS 4.2 session: A successfully established communication over a period of time between a client
and a server on which the Tabular Data Stream (TDS) protocol version 4.2 is used for message
exchange.

transaction manager: The party that is responsible for managing and distributing the outcome of
atomic transactions. A transaction manager is either a root transaction manager or a
subordinate transaction manager for a specified transaction.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry",
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

[IEEE754] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", IEEE 754-1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355

[MSDN-NP] Microsoft Corporation, "Named Pipes", https://docs.microsoft.com/en-
us/windows/desktop/ipc/named-pipes

[RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC

1122, October 1989, http://www.rfc-editor.org/rfc/rfc1122.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89888
https://go.microsoft.com/fwlink/?LinkId=89903
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=112180
https://go.microsoft.com/fwlink/?LinkId=90317

9 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.rfc-editor.org/rfc/rfc2246.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc-editor.org/rfc/rfc4234.txt

[RFC6101] Freier, A., Karlton, P., and Kocher, P., "The Secure Sockets Layer (SSL) Protocol Version
3.0", RFC 6101, August 2011, http://www.rfc-editor.org/rfc/rfc6101.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, http://www.rfc-editor.org/rfc/rfc793.txt

1.2.2 Informative References

[MSDN-BROWSE] Microsoft Corporation, "Browse Mode", in SQL Server 2000 Retired Technical
documentation, p. 12261, https://www.microsoft.com/en-us/download/confirmation.aspx?id=51958

[MSDN-BULKINSERT] Microsoft Corporation, "About Bulk Import and Bulk Export Operations",

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms187042(v=sql.105)

[MSDN-DTC] Microsoft Corporation, "Distributed Transaction Coordinator",
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms684146(v=vs.85)

[MSDN-MBCS] Microsoft Corporation, "Multibyte Character Sets (MBCS): Overview",
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-
6.0/aa270943(v=vs.60)

[MSDN-NamedPipes] Microsoft Corporation, "Creating a Valid Connection String Using Named Pipes",

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms189307(v=sql.105)

[MSDN-NTLM] Microsoft Corporation, "Microsoft NTLM", https://docs.microsoft.com/en-
us/windows/desktop/SecAuthN/microsoft-ntlm

[MSDN-UPDATETEXT] Microsoft Corporation, "UPDATETEXT (Transact-SQL)",
https://docs.microsoft.com/en-us/sql/t-sql/queries/updatetext-transact-sql

[MSDN-WRITETEXT] Microsoft Corporation, "WRITETEXT (Transact-SQL)",

https://docs.microsoft.com/en-us/sql/t-sql/queries/writetext-transact-sql

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication
Service (V5)", RFC 4120, July 2005, https://www.rfc-editor.org/rfc/rfc4120.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October
2005, https://www.rfc-editor.org/rfc/rfc4178.txt

[SSPI] Microsoft Corporation, "SSPI", https://docs.microsoft.com/en-

us/windows/desktop/SecAuthN/sspi

1.3 Overview

The TDS 4.2 protocol is an application-level protocol used for the transfer of requests and responses

between clients and database server systems. In such systems, the client will typically establish a
long-lived connection with the server. Once the connection is established using a transport-level
protocol, TDS 4.2 messages are used to communicate between the client and the server. A database
server can also act as the client if needed, in which case a separate TDS 4.2 connection needs to be
established. Note that the TDS 4.2 session is directly tied to the transport-level session, meaning
that a TDS 4.2 session is established when the transport-level connection is established and the server

https://go.microsoft.com/fwlink/?LinkId=90324
https://go.microsoft.com/fwlink/?LinkId=90462
https://go.microsoft.com/fwlink/?LinkId=509953
https://go.microsoft.com/fwlink/?LinkId=150872
https://go.microsoft.com/fwlink/?LinkId=140931
https://go.microsoft.com/fwlink/?LinkId=112204
https://go.microsoft.com/fwlink/?LinkId=89994
https://go.microsoft.com/fwlink/?LinkId=152566
https://go.microsoft.com/fwlink/?LinkId=152566
https://go.microsoft.com/fwlink/?LinkId=127839
https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=154272
https://go.microsoft.com/fwlink/?LinkId=154269
https://go.microsoft.com/fwlink/?LinkId=90458
https://go.microsoft.com/fwlink/?LinkId=90461
https://go.microsoft.com/fwlink/?LinkId=90536
https://go.microsoft.com/fwlink/?LinkId=90536

10 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

receives a request to establish a TDS 4.2 connection. It persists until the transport-level connection is
terminated (for example, when a TCP socket is closed). In addition, TDS 4.2 does not make any

assumption about the transport protocol used, but it does assume the transport protocol supports
reliable, in-order delivery of the data.

The TDS 4.2 protocol includes facilities for authentication and identification, channel encryption
negotiation, issuing of SQL batches, stored procedure calls, returning data, and transaction
manager requests. Returned data is self-describing and record-oriented. The data streams describe
the names, types, and optional descriptions of the rows being returned. The following figure depicts a
(simplified) typical flow of communication for TDS 4.2.

Figure 1: Communication flow in the TDS 4.2 protocol

The following example is a high-level description of the messages exchanged between the client and

the server to execute a simple client request, such as the execution of a SQL statement. It is
assumed that the client and the server have already established a connection and authentication has
succeeded.

 Client:SQL statement

The server executes the SQL statement and then sends back the results to the client. The data
columns being returned are first described by the server (represented as column metadata that

11 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

contains COLNAME and COLFMT) and then the rows follow. A completion message is sent after all the
row data has been transferred.

 Server:COLNAMEdata stream
 COLFMTdata stream
 ROWdata stream
 .
 .
 ROWdata stream
 DONEdata stream

See section 2.2.4 for additional information on the correlation between the data stream and TDS 4.2
buffer.

1.4 Relationship to Other Protocols

The TDS 4.2 protocol depends upon a network transport connection being established prior to a TDS

4.2 conversation occurring (the choice of transport protocol is not important to TDS 4.2).

This relationship is illustrated in the following figure.

Figure 2: Protocol relationship

1.5 Prerequisites/Preconditions

Throughout this document, it is assumed that the client has already discovered the server and
established a network transport connection for use with TDS 4.2.

No security association is assumed to have been established at the lower layer before TDS 4.2 begins

functioning. For SSPI authentication to be used, SSPI support has to be available on both the client
and server machines (for more information about SSPI, see [SSPI]). If channel encryption is to be

used, Transport Layer Security (TLS) /Secure Socket Layer (SSL) support has to be present on both
the client and server machines, and a certificate suitable for encryption has to be deployed on the
server machine. (For more details about TLS, see [RFC2246].)

1.6 Applicability Statement

The TDS 4.2 protocol is appropriate to use for facilitating request/response communications between
an application and a database server in all scenarios in which network or local connectivity is
available.

https://go.microsoft.com/fwlink/?LinkId=90536
https://go.microsoft.com/fwlink/?LinkId=90324

12 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Supported Transports: This protocol can be implemented on top of any network transport

protocol as discussed in section 2.1.

 Protocol Versions: This protocol supports exactly one version, which is Tabular Data Stream
Protocol Version 4.2.

 Security and Authentication Methods: The TDS 4.2 protocol supports SQL Server User
Authentication (SQLAUTH). SQLAUTH is an authentication mechanism used to support
SQL Server user accounts. The user name and password of the user account are transmitted as
part of the login message that the client sends to the server. The TDS 4.2 protocol also supports

SSPI authentication and indirectly supports any authentication mechanism that SSPI supports.
The use of SSPI in TDS 4.2 is defined in sections 2.2.6.7 and 3.2.5.1.

 Capability Negotiation: This protocol does explicit capability negotiation as specified in this
section.

In general, the TDS 4.2 protocol does not provide facilities for capability negotiation, because the
complete set of supported features is fixed for each version of the protocol. Certain features such as

authentication type are not negotiated, but instead requested by the client. However, one feature that
is negotiated is channel encryption. The encryption behavior used for the TDS 4.2 session is
negotiated in the initial messages exchanged by the client and server. See the PRELOGIN description
in section 2.2.6.4 for further details.

Note that the cipher suite for TLS/SSL and the authentication mechanism for SSPI are negotiated
outside of the influence of TDS 4.2 (for more details, see [RFC2246] and [RFC6101].

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

Parameter TCP port value Reference

Default SQL Server instance TCP port 1433 [IANAPORT]

https://go.microsoft.com/fwlink/?LinkId=90324
https://go.microsoft.com/fwlink/?LinkId=509953
https://go.microsoft.com/fwlink/?LinkId=89888

13 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

2 Messages

The formal syntax of all messages is specified in Augmented Backus-Naur Form (ABNF); for more
details, see [RFC4234].

2.1 Transport

The TDS 4.2 protocol does not prescribe a specific underlying transport protocol to use on the Internet
or on other networks. This protocol only presumes a reliable transport that guarantees in-sequence
delivery of data.

The chosen transport can be either stream-oriented or message-oriented. If a message-oriented
transport is used, then any TDS 4.2 packet sent from a TDS 4.2 client to a TDS 4.2 server MUST be

contained within a single transport data unit. Any additional mapping of TDS 4.2 data onto the
transport data units of the protocol in question is outside the scope of this specification.

The TDS 4.2 protocol has implementations over the following transports:

 TCP. For more details, see [RFC793].

 Named Pipes in message mode. For more details, see [MSDN-NP].<1>

 Optionally, the TDS 4.2 protocol has implemented TLS (for more details, see [RFC2246]) and SSL
on top of the preceding transports, in case TLS/SSL encryption is negotiated.

2.2 Message Syntax

Character data, such as SQL statements, within a TDS 4.2 message is in multi-byte character set
(MBCS) format (for more information, see [MSDN-MBCS]). Character counts within TDS 4.2 messages
are specified as byte counts.

2.2.1 Client Messages

Messages sent from the client to the server are as follows:

 A pre-login record

 A login record

 A SQL batch (in any language that the server will accept)

 A SQL statement followed by its associated binary data (for example, the data for a bulk load
SQL statement)

 A remote procedure call (RPC)

 An attention signal

 A transaction manager request

These are briefly described in the subsections under this section; detailed descriptions of message
contents are included in section 2.2.6.

2.2.1.1 Pre-Login

Before a login occurs, a handshake-denominated pre-login message exchange occurs between client
and server, setting up contexts such as encryption. See section 2.2.6.4 for additional details.

https://go.microsoft.com/fwlink/?LinkId=90462
https://go.microsoft.com/fwlink/?LinkId=150872
https://go.microsoft.com/fwlink/?LinkId=90247
https://go.microsoft.com/fwlink/?LinkId=90324
https://go.microsoft.com/fwlink/?LinkId=152566

14 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

2.2.1.2 Login

When the client begins to establish a TDS 4.2 protocol connection with the server side, the client
MUST send a login message data stream to the server. The client can have more than one

connection to the server, but each connection is established separately in the same way. For
additional details, see section 2.2.6.3.

After the server has received the login record from the client, it will notify the client that it has either
accepted or rejected the connection request. For additional details, see section 3.3.5.1.

2.2.1.3 SQL Batch

To send a SQL statement or a batch of SQL statements, the SQL batch, represented by a multiple-
byte character set (MBCS) string, is copied into the data section of a TDS 4.2 packet and then sent to
the server. A SQLBatch packet header can span more than one TDS 4.2 packet. For additional details,
see section 2.2.6.6.

2.2.1.4 Bulk Load

The bulk insert/bulk load operation is a case of a SQL statement that is followed by binary data. The
client first sends the INSERT BULK SQL statement. The server responds with a DONE token. The client
then sends a BulkLoadBCP data stream to the server. For additional details, see section 2.2.6.1.

2.2.1.5 Remote Procedure Call

To execute a remote procedure call (RPC) on the server, the client sends an RPC message data
stream to the server. This is a binary stream that contains the RPC name or numeric identifier,
options, and parameters. RPCs MUST be in a separate TDS 4.2 message and not intermixed with SQL

statements. There can be several RPCs in one message. For additional details, see section 2.2.6.5.

2.2.1.6 Attention

The client can interrupt and cancel the current request by sending an Attention message. This is also
known as out-of-band data, but any TDS 4.2 packet (request) that is currently being sent MUST be

completely sent before sending the Attention message. After the client sends an Attention message,
the client MUST read until it receives an Attention acknowledgment.

If a complete request has been sent to the server, sending a cancel request requires sending an
Attention packet. An example of this behavior is when the client has already sent a request, which has
the last packet with the EOM bit (0x01) set in the status. The Attention packet is the only way to
interrupt a complete request that has already been sent to the server. See section 2.2.4.4.2 for
additional details.

If a complete request has not been sent to the server, the client MUST send the next packet with both
the ignore bit (0x02) and EOM bit (0x01) set in the status to cancel the request. An example of this
behavior is when one or more packets have been sent but the last packet with the EOM bit (0x01) set
in the status has not been sent. Setting the ignore and EOM bits terminates the current request, and

the server MUST ignore the current request. When the ignore and EOM bits are set, the server will not
send an Attention acknowledgment but instead return a table response with a single DONE token

with a status of DONE_ERROR to indicate the incoming request was ignored. See section 2.2.3.1.2 for
additional details about the buffer header status code.

2.2.1.7 Transaction Manager Request

The client can request that the connection enlist in a Distributed Transaction Coordinator (DTC)

transaction. For more information, see [MSDN-DTC].

https://go.microsoft.com/fwlink/?LinkId=89994

15 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

2.2.2 Server Messages

Messages sent from the server to the client are as follows:

 A pre-login response

 A login response

 Row data

 The return status of an RPC

 The return parameters of an RPC

 The response completion

 The error and information

 An attention signal

These are briefly described in the following sections; detailed descriptions of message contents are
included in section 2.2.6.

2.2.2.1 Pre-Login Response

The pre-login response is a tokenless packet data stream. The data stream consists of the response
to the information requested by the client pre-login message. For a detailed description of this stream,
see section 2.2.6.4.

2.2.2.2 Login Response

The login response is a token stream consisting of information about the server's characteristics,
optional information, and error messages, followed by a completion message.

The LOGINACK token data stream includes information about the server interface and the server's
product code and name. For a detailed description of the login response data stream, see section
2.2.7.13.

If there are any messages in the login response, an ERROR or INFO token data stream is returned
from the server to the client. For additional information, see sections 2.2.7.11 and 2.2.7.12.

As part of the login response, the server can send one or more ENVCHANGE token data streams if the
login changed the environment and the associated notification flag was set. An example of an
environment change includes the current database context and language setting. For more details
about the different environment changes, see section 2.2.7.10.

If the database specified for connection in the login packet is participating in real-time log shipping,
the corresponding ENVCHANGE is included as part of the response.

A DONE token data stream MUST be the last thing sent in response to a client login request. For

additional information about the DONE token data stream, see section 2.2.7.7.

2.2.2.3 Row Data

If the client request results in data being returned, the data precedes any other data streams

returned from the server. Row data MUST be preceded by a description of the column names and data
types. For additional information about how the column names and data types are described, see
sections 2.2.7.6 and 2.2.7.5.

16 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

2.2.2.4 Return Status

When a stored procedure is executed by the server, the server has to return a status value. This is a
4-byte integer and is sent via the RETURNSTATUS token. A stored procedure execution is requested

through either an RPC Batch or SQL Batch message. For additional information, see section 2.2.7.16.

2.2.2.5 Return Parameters

The response format for execution of a stored procedure is identical regardless of whether the
request was sent as SQL Batch or RPC Batch. It is always a tabular result-type message.

The procedure can explicitly send any data, including row data, informational messages, and error
messages. This data is sent in the usual way.

When the RPC is invoked, some or all of its parameters are designated as output parameters. All
output parameters have values returned from the server. For each output parameter, there is a
corresponding return value that is sent via the RETURNVALUE token. The RETURNVALUE token data
stream is also used for sending back the value returned by a user-defined function (UDF), if it is

called as an RPC. For additional details about the RETURNVALUE token, see section 2.2.7.17.

2.2.2.6 Response Completion (DONE)

The client reads results in logical units and can determine when all results have been received by
examining the DONE token data stream.

When executing a batch of SQL statements, the server MUST return a DONE token data stream for
each set of results. All but the last DONE will have the DONE_MORE bit set in the Status field of the
DONE token data stream. Therefore, the client can always determine after reading a DONE whether
there are more results. For additional details about the DONE token, see section 2.2.7.7.

For stored procedures, completion of SQL statements in a stored procedure is indicated by a
DONEINPROC token data stream<2> for each SQL statement and a DONEPROC token data stream for
each completed stored procedure. For additional details about DONEINPROC and DONEPROC tokens,

see sections 2.2.7.8 and 2.2.7.9, respectively.

2.2.2.7 Error and Info Messages

Besides returning a description of row data and the data itself, TDS 4.2 provides a token data stream

type for the server to send error or informational messages to the client. These are the INFO token
data stream, described in section 2.2.7.12 and the ERROR token data stream, described in section
2.2.7.11.

2.2.2.8 Attention Acknowledgment

After a client has sent an interrupt signal to the server, the client MUST read returning data until the
interrupt has been acknowledged. Attentions are acknowledged in the DONE token data stream,
described in section 2.2.7.7.

2.2.3 Packets

A packet is the unit written or read at one point in time. A message can consist of one or more
packets. A packet always includes a packet header and is usually followed by packet data that
contains the message. Each new message starts in a new packet.

In practice, both the client and server will try to read a packet full of data. They will pick out the
header to see how much more (or less) data there is in the communication.

17 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

At login, clients can specify a requested packet size as part of the LOGIN message stream. This
identifies the size used to break large messages into different packets. Server acknowledgment of

changes in the negotiated packet size is transmitted back to the client via the ENVCHANGE token
stream, described in section 2.2.7.10. The negotiated packet size is the maximum value that can be

specified in the Length packet header field described in section 2.2.3.1.3.

2.2.3.1 Packet Header

To implement messages on top of existing, arbitrary transport layers, a packet header is included as

part of the packet. The packet header precedes all data within the packet. It is always 8 bytes in
length. Most importantly, the buffer header states the Type and Length attributes of the entire
packet.

The subsections under this section provide a detailed description of each item within the packet
header.

2.2.3.1.1 Type

Type defines the type of message. Type is a 1-byte unsigned char. Types are as follows.

Value Description
Buffer
data?

1 SQL batch. This can be any language that the server understands. Yes

2 Login. Yes

3 RPC. Yes

4 Tabular result. This indicates a stream that contains the server response to a client
request.

Yes

5 Unused. -

6 Attention signal. No

7 Bulk load data. This type is used to send binary data to the server. Yes

8-13 Unused. -

14 Transaction manager request. Yes

15 Unused. -

16 Unused. -

17 SSPI message. Yes

18 Pre-login message. Yes

If an unknown Type is specified, the message receiver SHOULD disconnect the connection. If a valid

Type is specified, but is unexpected (according to section 3.3.5), the message receiver SHOULD
disconnect the connection. This applies to both the client and the server. For example, the server
could disconnect the connection if the server receives a message with Type equal to 2 when the
connection is already logged in.

The following table highlights which messages, as described previously in sections 2.2.1 and 2.2.2,
correspond to which packet header type.

18 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Message type Client or server message Buffer header type

Pre-login Client 18

Login Client 2+17 (if Integrated authentication)

SQL batch Client 1

Bulk load Client 7

RPC Client 3

Attention Client 6

Transaction manager request Client 14

Pre-login response Server 4

Login response Server 4

Row data Server 4

Return status Server 4

Return parameters Server 4

Response completion (DONE) Server 4

Error and info messages Server 4

Attention acknowledgement Server 4

2.2.3.1.2 Status

Status is used to indicate the message state. Status is a 1-byte unsigned char. The following
Status bit flags are defined.

Value Description

0x00 "Normal" message.

0x01 End of message (EOM). EOM indicates the last packet of the message.

0x02 From client to server. Ignore this event (0x01 MUST also be set).

All other bits are not used and are ignored.

2.2.3.1.3 Length

Length is the size of the packet, including the 8 bytes in the packet header. It is the number of bytes

from the start of this header to the start of the next packet header. Length is a 2-byte, unsigned
short int and is represented in network byte order (big-endian).

2.2.3.1.4 SPID

SPID is the process ID on the server, corresponding to the current connection. This information is
sent by the server to the client and is useful for identifying which thread on the server is sent to the

TDS 4.2 packet. It is provided for debugging purposes. The client MAY send the SPID value to the

19 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

server. If the client does not, then a value of 0x0000 SHOULD be sent to the server. This is a 2-byte
value and is represented in network byte order (big-endian).

2.2.3.1.5 PacketID

PacketID is used for numbering message packets that contain data in addition to the packet header.
PacketID is a 1-byte, unsigned char. Each time packet data is sent, the value of PacketID is
incremented by 1, up to 255 (using modulo 256). This allows the receiver to track the sequence of
TDS 4.2 packets for a given message. The value is currently ignored by the server.

2.2.3.1.6 Window

This 1-byte item is currently not used. This byte SHOULD be set to 0x00 and SHOULD be ignored by

the receiver.

2.2.3.2 Packet Data

Packet data for a given message follows the packet header (for messages that contain packet data,

see Type in section 2.2.3.1.1). As previously stated, a message can span more than one packet.
Because each new message always has to begin within a new packet, a message that spans more
than one packet occurs only if the data to be sent exceeds the maximum packet data size, which is
computed as negotiated packet size (8 bytes), where the 8 bytes represent the size of the packet
header.

If a stream spans more than one packet, the EOM bit of the packet header Status code has to be set
to 0 (zero) for every packet header. The EOM bit has to be set to 1 in the last packet to signal that the

stream ends. In addition, the PacketID field of subsequent packets has to be incremented as defined
in section 2.2.3.1.5.

2.2.4 Packet Data Token and Tokenless Data Streams

The messages contained in packet data that pass between the client and the server can be one of two

types: a token stream or a tokenless stream. A token stream consists of one or more tokens, each
followed by some token-specific data. A token is a 1-byte identifier used to describe the data that
follows it (for example, it contains token data type, token data length, and so on). Tokenless streams
are typically used for simple messages. Messages that require a more detailed description of the data
within them are sent as a token stream. The following table highlights which messages, as described
in sections 2.2.1 and 2.2.2, use token streams and which do not.

Message type Client or server message Token stream used

Pre-login Client No

Login Client No

SQL batch Client No

Bulk load Client Yes

RPC Client Yes

Attention Client No

Transaction manager request Client No

Login response Server Yes

Row data Server Yes

20 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Message type Client or server message Token stream used

Return status Server Yes

Return parameters Server Yes

Response completion (DONE) Server Yes

Error and info messages Server Yes

Attention acknowledgement Server No

2.2.4.1 Tokenless Stream

As shown in the previous section, some messages do not use tokens to describe the data portion of
the data stream. In these cases, all the information required to describe the packet data is contained

in the packet header. This is referred to as a tokenless stream and is essentially just a collection of

packets and data.

2.2.4.2 Token Stream

More complex messages (for example, row data) are constructed using tokens. As previously
described, a token consists of a 1-byte identifier, followed by token-specific data.

2.2.4.2.1 Token Definition

There are three classes of token definitions:

 Zero-Length Token (xx01xxxx)

 Fixed-Length Token (xx11xxxx)

 Variable-Length Tokens (xx10xxxx)

The following sections specify the bit pattern of each token class, various extensions to this bit pattern

for a given token class, and a description of its functions.

2.2.4.2.1.1 Zero-Length Token (xx01xxxx)

This class of token is not followed by a length specification. There is no data associated with the token.
A zero-length token always has the following bit sequence.

0 1 2 3 4 5 6 7

x x 0 1 x x x x

In this table, x denotes a bit position that can contain the bit value 0 or 1.

2.2.4.2.1.2 Fixed-Length Token (xx11xxxx)

This class of token is followed by 1, 2, 4, or 8 bytes of data. No length specification follows this token,
because the length of its associated data is encoded in the token itself. The different fixed -length
token definitions take the form of one of the following bit sequences, depending on whether the token
is followed by 1, 2, 4, or 8 bytes of data.

21 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

0 1 2 3 4 5 6 7 Description

x x 1 1 0 0 x X Token is followed by 1 byte of data.

x x 1 1 0 1 x X Token is followed by 2 bytes of data.

x x 1 1 1 0 x X Token is followed by 4 bytes of data.

x x 1 1 1 1 x X Token is followed by 8 bytes of data.

In this table, x denotes a bit position that can contain the bit value 0 or 1.

Fixed-length tokens are use by the following data types: bigint, int, smallint, tinyint, float, real,
money, smallmoney, datetime, smalldatetime, and bit. The type definition is always represented
in COLFMT and ALTFMT data streams as a single byte type. For additional details, see section

2.2.5.3.1.

2.2.4.2.1.3 Variable-Length Token (xx10xxxx)

This class of token definition is followed by a length specification. The length (in bytes) is included in
the token itself as a length value (see the Length rule of the COLINFO token stream). The various
different variable-length token definitions have the following bit sequence:

0 1 2 3 4 5 6 7 Description

0 0 1 0 0 1 x X Length of data is represented by 1 byte.

0 0 1 0 1 0 X X Length of data is represented by 1 byte.

0 0 1 0 1 1 X X Length of data is represented by 1 byte.

0 1 1 0 0 1 X X Length of data is represented by 1 byte.

0 1 1 0 1 0 X X Length of data is represented by 1 byte.

0 1 1 0 1 1 X x Length of data is represented by 1 byte.

1 0 1 0 x x X x Length of data is represented by 2 bytes.

1 1 1 0 x x X x Length of data is represented by 2 bytes.

0 0 1 0 0 0 X x Length of data is represented by 4 bytes.

0 1 1 0 0 0 X x Length of data is represented by 4 bytes.

In the preceding table, x denotes a bit position that can contain the bit value 0 or 1.

There are two data types that are of variable length. These are real variable-length data types like
char and binary and nullable data types that are either their normal fixed-length, corresponding to
their type_info, or a special length if NULL.

Text and image data types have values that are either NULL or 1 to 2 gigabytes (0x00000000 to
0x7FFFFFFF bytes) in length.

A data type has a length of 0 if it is NULL.

2.2.4.3 DONE and Attention Tokens

The DONE token marks the end of the response for each executed SQL statement. Based on the SQL
statement and the context in which it is executed, the server might generate the DONEPROC or
DONEINPROC token instead.

22 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

The attention signal is sent using the out-of-band write operation provided by the network library. An
out-of-band write provides the ability to send the attention signal whether the sender is in the middle

of sending or processing a message or simply sitting idle. If the out-of-band operation is not
supported, the clients MUST simply read and discard all of the data from the server until the final

DONE token is read.

2.2.4.4 Token Stream Examples

The following two examples highlight token stream communication. The packaging of these token

streams into packets is not shown in this section. Actual TDS 4.2 network data samples are available
in section 4.

2.2.4.4.1 Sending a SQL Batch

In this example, a SQL statement is sent to the server, and the results are sent to the client. The SQL
statement is as follows.

 SQLStatement = select name, empid from employees
 update employees set salary = salary * 1.1
 select name from employees where department = 'HR'

 Client: SQLStatement

 Server: COLNAME data stream
 COLFMT data stream
 ROW data stream
 .
 .
 ROW data stream
 DONE data stream (with DONE_COUNT & DONE_MORE
 bits set)
 DONE data stream (for UPDATE, with DONE_COUNT &
 DONE_MORE bits set)
 COLNAME data stream
 COLFMT data stream
 ROW data stream
 .
 .
 ROW data stream
 DONE data stream (with DONE_COUNT bit set)

2.2.4.4.2 Out-of-Band Attention Signal

In this example, a SQL statement is sent to the server; however, before all the data has been
returned, an interrupt or Attention signal is sent to the server. The client reads and discards any data
received between the time the interrupt was sent and the interrupt acknowledgment was received.
The interrupt acknowledgment from the server is a bit that is set in the status field of the DONE token.

 Client: select name, empid from employees

 Server: COLNAME data stream
 COLFMT datastream
 ROW data stream
 .
 .
 ROW data stream

 Client: ATTENTION SENT

23 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

The client reads and discards any data from the server until a DONE_ATTN acknowledgment is
received.

 Server: DONE data stream (with DONE_ATTN bit set)

2.2.5 Grammar Definition for Token Description

The TDS 4.2 protocol consists of a variety of messages. Each message consists of a set of bytes

transmitted in a predefined order. This predefined order, or grammar, can be specified using
Augmented Backus-Naur Form (for more details, see [RFC4234]). Details can be found in the following
subsections.

2.2.5.1 General Rules

Data structure encodings in TDS 4.2 are defined in terms of the following fundamental definitions.

BIT: A single bit value of either 0 or 1.

 BIT = %b0 / %b1

BYTE: An unsigned single byte (8-bit) value. The range is 0 to 255.

 BYTE = 8BIT

BYTELEN: An unsigned single byte (8-bit) value representing the length of the associated data. The
range is 0 to 255.

 BYTELEN = BYTE

USHORT: An unsigned 2-byte (16-bit) value. The range is 0 to 65535.

 USHORT = 2BYTE

LONG: A signed 4-byte (32-bit) value. The range is -(231) to (231)-1.

 LONG = 4BYTE

ULONG: An unsigned 4-byte (32-bit) value. The range is 0 to (232)-1.

 ULONG = 4BYTE

DWORD: An unsigned 4-byte (32-bit) value. The range when used as a numeric value is 0 to (232)-1.

 DWORD = 32BIT

ULONGLONG: An unsigned 8 byte (64-bit) value. The range is 0 to (264)-1.

https://go.microsoft.com/fwlink/?LinkId=90462

24 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 ULONGLONG = 8BYTE

UCHAR: An unsigned single byte (8-bit) value representing a character. The range is 0 to 255.

 UCHAR = BYTE

USHORTLEN: An unsigned 2-byte (16-bit) value representing the length of the associated data. The
range is 0 to 65535.

 USHORTLEN = 2BYTE

LONGLEN: A signed 4-byte (32-bit) value representing the length of the associated data. The range is
-(231) to (231)-1.

 LONGLEN = 4BYTE

PRECISION: An unsigned single byte (8-bit) value representing the precision of a numeric number.

 PRECISION = 8BIT

SCALE: An unsigned single byte (8-bit) value representing the scale of a numeric number.

 SCALE = 8BIT

GEN_NULL: A single byte (8-bit) value representing a NULL value.

 GEN_NULL = %x00

FRESERVEDBIT: A FRESERVEDBIT is a BIT value used for padding that does not transmit
information. FRESERVEDBIT fields ought to be set to %b0 and have to be ignored on receipt.

 FRESERVEDBIT = %b0

FRESERVEDBYTE: A FRESERVEDBYTE is a BYTE value used for padding that does not transmit
information. FRESERVEDBYTE fields ought to be set to %x00 and have to be ignored on receipt.

 FRESERVEDBYTE = %x00

Note All integer types are represented in the byte order requested by the client in the lInt2 field of

the LOGIN token stream, unless otherwise specified.

2.2.5.1.1 Least Significant Bit Order

Certain tokens will possess rules that are comprised of an array of independent bits. These are
typically "flag" rules in which each bit is a flag indicating that a specific feature or option is
enabled/requested. Normally, the bit array will be arranged in least significant bit order (or typical

array index order), meaning that the first listed flag is placed in the least significant bit position

25 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

(identifying the least significant bit as it would in an integer variable). For example, if Fn is the nth
flag, then the following rule definition:

 FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7

would be observed on the wire in the natural value order F7F6F5F4F3F2F1F0.

If the rule contains 16 bits, then the order of the bits observed on the wire will follow the little-
endian byte ordering. For example:

 FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

will have the following order on the wire: F7F6F5F4F3F2F1F0 F15F14F13F12F11F10F9F8.

2.2.5.2 Data Stream Types

2.2.5.2.1 Unknown-Length Data Streams

Unknown-length data streams are used by some tokenless data streams. It is a stream of bytes. The
number of bytes within the data stream is defined in the packet header as specified in section 2.2.3.1.

 BYTESTREAM = *BYTE

2.2.5.2.2 Variable-Length Data Streams

Variable-length data streams consist of a stream of characters or a stream of bytes. The two types

are similar in that they both have a length rule and a data rule.

Characters

Variable-length character streams are defined by a length field followed by the data itself. There are
three types of variable-length character streams, each dependent on the size of the length field (for
example, a BYTE, USHORT, or LONG). In this section, "value" refers to the value of the variable, not
the size of the variable type (for example, not LONGLEN but the value stored in the variable "x" of
type LONGLEN). If the length field is zero, no data follows the length field.

 B_VARCHAR = BYTELEN *CHAR
 US_VARCHAR = USHORTLEN *CHAR

Note that the lengths of B_VARCHAR and US_VARCHAR are given in bytes.

Generic Bytes

Similar to the variable-length character stream, variable-length byte streams are defined by a length

field followed by the data itself. There are three types of variable-length byte streams, each
dependent on the size of the length field (for example, a BYTE, USHORT, or LONG). If the value of the
length field is zero, then no data follows the length field.

 B_VARBYTE = BYTELEN *BYTE
 US_VARBYTE = USHORTLEN *BYTE
 L_VARBYTE = LONGLEN *BYTE

26 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

2.2.5.2.3 Data-Type-Dependent Data Streams

Some messages contain variable data types. The actual type of a given variable data type is
dependent on the type of the data being sent within the message as defined in the TYPE_INFO rule.

For example, the RPCRequest message contains the TYPE_INFO and TYPE_VARBYTE rules. These two
rules contain data of a type that is dependent on the actual type used in the value of the
FIXEDLENTYPE or VARLENTYPE rules of the TYPE_INFO rule.

Data-type-dependent data streams occur in three forms: integers, fixed bytes, and variable bytes.

Integers

Data-type-dependent integers can be either a BYTELEN or LONGLEN in length. This length is
dependent on the TYPE_INFO associated with the message. If the data type (for example, the

FIXEDLENTYPE or VARLENTYPE rule of the TYPE_INFO rule) is of type TEXTTYPE and IMAGETYPE, the
integer length is LONGLEN. For all other data types, the integer length is BYTELEN.

 TYPE_VARLEN = BYTELEN
 /
 LONGLEN

Fixed and Variable Bytes

The data type to be used in a data-type-dependent byte stream is defined by the TYPE_INFO rule
associated with the message.

For variable-length types, the TYPE_VARLEN value defines the length of the data to follow. As
described earlier, the TYPE_INFO rule defines the type of TYPE_VARLEN (for example BYTELEN or
LONGLEN).

For fixed-length types, the TYPE_VARLEN rule is not present. In these cases the number of bytes to be

read is determined by the TYPE_INFO rule. For example, if "INT2TYPE" is specified as the value for the
FIXEDLENTYPE rule of the TYPE_INFO rule, 2 bytes are to be read, because "INT2TYPE" is always 2

bytes in length. See section 2.2.5.3 for more details.

The following data can be a stream of bytes or a NULL value. The GEN_NULL rule applies to all types.

 TYPE_VARBYTE = GEN_NULL
 / ([TYPE_VARLEN] *BYTE)

2.2.5.3 Data Type Definitions

The subsections within this section describe the different sets of data types and how they are
categorized. Specifically, data values are interpreted and represented in association with their data
type. Details about each data type categorization are described in the following sections.

2.2.5.3.1 Fixed-Length Data Types

Note that these fixed-length data types are all 1 byte in length, as specified in section 2.2.4.2.1.2.

 NULLTYPE = %x1F ; Null (no data associated with this type)
 INT1TYPE = %x30 ; TinyInt (1 byte data representation)
 BITTYPE = %x32 ; Bit (1 byte data representation)
 INT2TYPE = %x34 ; SmallInt (2 byte data representation)
 INT4TYPE = %x38 ; Int (4 byte data representation)
 DATETIM4TYPE = %x3A ; SmallDateTime (4 byte data
 representation)

27 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 FLT4TYPE = %x3B ; Real (4 byte data representation)
 MONEYTYPE = %x3C ; Money (8 byte data representation)
 DATETIMETYPE = %x3D ; DateTime (8 byte data representation)
 FLT8TYPE = %x3E ; Float (8 byte data representation)
 MONEY4TYPE = %x7A ; SmallMoney (4 byte data representation)
 INT8TYPE = %x7F ; BigInt (8 byte data representation)

 FIXEDLENTYPE = NULLTYPE
 \
 INT1TYPE
 \
 BITTYPE
 \
 INT2TYPE
 \
 INT4TYPE
 \
 DATETIM4TYPE
 \
 FLT4TYPE
 \
 MONEYTYPE
 \
 DATETIMETYPE
 \
 FLT8TYPE
 \
 MONEY4TYPE
 \
 INT8TYPE

2.2.5.3.2 Variable-Length Data Types

The data type token values defined in this section have a length value associated with the data type,
because the data value corresponding to these data types is represented by a variable number of
bytes. The token values defined in this section follow the rule defined in section 2.2.4.2.1.3.

 GUIDTYPE = %x24 ; UniqueIdentifier
 INTNTYPE = %x26 ; (see below)
 DECIMALTYPE = %x37 ; Decimal
 NUMERICTYPE = %x3F ; Numeric
 BITNTYPE = %x68 ; (see below)
 DECIMALN = %x6A ; Decimal
 NUMERICNTYPE = %x6C ; Numeric
 FLTNTYPE = %x6D ; (see below)
 MONEYNTYPE = %x6E ; (see below)
 DATETIMNTYPE = %x6F ; (see below)
 CHARTYPE = %x2F ; Char
 VARCHARTYPE = %x27 ; VarChar
 BINARYTYPE = %x2D ; Binary
 VARBINARYTYPE = %x25 ; VarBinary

 TEXTTYPE = %x23 ; Text
 IMAGETYPE = %x22 ; Image

 BYTELEN_TYPE = GUIDTYPE
 /
 INTNTYPE
 /
 DECIMALTYPE
 /
 NUMERICTYPE
 /
 BITNTYPE
 /

28 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 DECIMALN
 /
 NUMERICNTYPE
 /
 FLTNTYPE
 /
 MONEYNTYPE
 /
 DATETIMNTYPE
 /
 CHARTYPE
 /
 VARCHARTYPE
 /
 BINARYTYPE
 /
 VARBINARYTYPE ; the length value associated
 with these data types is
 specified within a BYTE

For MONEYNTYPE, the only valid lengths are 0x04 and 0x08, which map to smallmoney and money
SQL Server data types, respectively.

For DATETIMNTYPE, the only valid lengths are 0x04 and 0x08, which map to smalldatetime and
datetime SQL Server data types, respectively.

For INTNTYPE, the only valid lengths are 0x01, 0x02, 0x04, and 0x08, which map to tinyint,

smallint, int, and bigint SQL Server data types, respectively.

For FLTNTYPE, the only valid lengths are 0x04 and 0x08, which map to 7-digit precision float and 15-
digit precision float SQL Server data types, respectively.

For GUIDTYPE, the only valid lengths are 0x10 for non-NULL instances and 0x00 for NULL instances.

For BITNTYPE, the only valid lengths are 0x01 for non-NULL instances and 0x00 for NULL instances.

Exceptions are thrown when invalid lengths are presented to the server during BulkLoadBCP and RPC

requests.

 LONGLEN_TYPE = IMAGETYPE
 /
 TEXTTYPE ; the length value associated with
 these data types is specified
 within a LONG

 VARLENTYPE = BYTELEN_TYPE
 /
 LONGLEN_TYPE

Nullable values are returned using the INTNTYPE, BITNTYPE, FLTNTYPE, GUIDTYPE, MONEYNTYPE, and

DATETIMNTYPE tokens, which will use the length byte to specify the length of the value or GEN_NULL
as appropriate.

2.2.5.4 Data Type Details

The subsections within this section specify the formats in which values of system data types are

serialized in TDS.

2.2.5.4.1 System Data Type Values

29 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

The subsections within this section specify the formats in which values of various common system
data types are serialized in TDS.

2.2.5.4.1.1 Integers

All integer types are represented in reverse byte order (little-endian) unless otherwise specified.
Each integer takes a whole number of bytes as follows:

bit: 1 byte

tinyint: 1 byte

smallint: 2 bytes

int: 4 bytes

bigint: 8 bytes

2.2.5.4.1.2 Timestamp

timestamp/rowversion is represented as an 8-byte binary sequence with no particular
interpretation.

2.2.5.4.1.3 Character and Binary Strings

See Variable-Length Data Types (section 2.2.5.3.2).

2.2.5.4.1.4 Fixed-Point Numbers

smallmoney is represented as a 4-byte signed integer. The TDS value is the smallmoney value
multiplied by 104.

money is represented as an 8-byte signed integer. The TDS value is the money value multiplied by
104. The 8-byte signed integer itself is represented in the following sequence:

 One 4-byte integer that represents the more significant half.

 One 4-byte integer that represents the less significant half.

2.2.5.4.1.5 Floating-Point Numbers

float(n) follows the 32-bit [IEEE754] binary specification when n <= 24 and the 64-bit [IEEE754]
binary specification when 25 <= n <= 53.

2.2.5.4.1.6 Decimal/Numeric

Decimal or Numeric is defined as decimal(p, s) or numeric(p, s), where p is the precision and s is
the scale. The value is represented in the following sequence:

 One 1-byte unsigned integer that represents the sign of the decimal value as follows:

 1 means negative.

 0 means nonnegative.

 One 4-, 8-, 12-, or 16-byte signed integer that represents the decimal value multiplied by 10s. The

maximum size of this integer is determined based on p as follows:

 4 bytes if 1 <= p <= 9.

https://go.microsoft.com/fwlink/?LinkId=89903

30 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 8 bytes if 10 <= p <= 19.

 12 bytes if 20 <= p <= 28.

 16 bytes if 29 <= p <= 38.

The actual size of this integer could be less than the maximum size, depending on the value. In all

cases, the integer part MUST be 4, 8, 12, or 16 bytes.

2.2.5.4.1.7 GUID

uniqueidentifier is represented as a 16-byte binary sequence with no specific interpretation.

2.2.5.4.1.8 Date/Times

smalldatetime is represented in the following sequence:

 One 2-byte unsigned integer that represents the number of days since January 1, 1900.

 One 2-byte unsigned integer that represents the number of minutes elapsed since 12 A.M. that
day.

datetime is represented in the following sequence:

 One 4-byte signed integer that represents the number of days since January 1, 1900. Negative
numbers are allowed to represent dates since January 1, 1753.

 One 4-byte unsigned integer that represents the number of one three-hundredths of a second
(300 counts per second) elapsed since 12 A.M. that day.

2.2.5.5 Type Info Rule Definition

The TYPE_INFO rule applies to several messages used to describe column information. For columns of

fixed data length, the type is all that is required to determine the data length. For columns of a

variable-length type, TYPE_VARLEN defines the length of the data contained within the column.

PRECISION and SCALE have to occur if the type is NUMERIC, NUMERICN, DECIMAL, or DECIMALN.

 TYPE_INFO = FIXEDLENTYPE
 /
 (VARLENTYPE, TYPE_VARLEN [PRECISION SCALE])

2.2.5.6 Data Buffer Stream Tokens

The tokens defined as follows are used as part of the token-based data stream. For more details
about the way each token is used inside the data stream, see section 2.2.6.

 ALTFMT_TOKEN = %xA8
 ALTNAME_TOKEN = %xA7
 ALTROW_TOKEN = %xD3
 COLFMT_TOKEN = %xA1

 COLINFO_TOKEN = %xA5
 COLNAME_TOKEN = %xA0
 DONE_TOKEN = %xFD
 DONEPROC_TOKEN = %xFE
 DONEINPROC_TOKEN = %xFF
 ENVCHANGE_TOKEN = %xE3
 ERROR_TOKEN = %xAA
 INFO_TOKEN = %xAB

31 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 LOGINACK_TOKEN = %xAD
 OFFSET_TOKEN = %x78
 ORDER_TOKEN = %xA9
 RETURNSTATUS_TOKEN = %x79
 RETURNVALUE_TOKEN = %xAC
 ROW_TOKEN = %xD1
 SSPI_TOKEN = %xED
 TABNAME_TOKEN = %xA4

2.2.6 Packet Header Message Type Stream Definition

2.2.6.1 Bulk Load BCP

Stream Name

 BulkLoadBCP

Stream Function

Describes the format of bulk-loaded data with INSERT BULK.

Stream Comments

 The packet header type is 0x07.

 This message sent to the server contains bulk data to be inserted. The client MUST have
previously notified the server where this data is to be inserted. For more information about how to
notify the server, see [MSDN-BULKINSERT].

 A sample BulkLoadBCP message is in section 4.10.

Stream-Specific Rules

 Length = USHORT
 ImageTextColDim = USHORT
 TiFlag = BYTE
 ColId = BYTE
 Reserved = USHORT ; The server SHOULD ignore
 this field.
 NumVarCols = BYTE
 RowNum = BYTE
 FixedColData = *BYTE
 Paddings = *BYTE
 RowLen = USHORT
 VarColData = *BYTE
 Adjust = 1*BYTE
 Offset = <NumVarCols+1>BYTE
 ColData = NumVarCols
 RowNum
 *FixedColData
 Paddings
 RowLen
 * VarColData
 Adjust
 Offset
 RowData = Length
 ColData
 *(ImageTextColLenDim
 TiFlag
 ColId
 Reserved

https://go.microsoft.com/fwlink/?LinkId=112204

32 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 TYPE_VARBYTE) ;The TYPE_VARBYTE for the
 type specified by TiFlag.

Stream Definition

 BulkLoadBCP = 1*RowData

Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

Length The actual length, in bytes, of the ColData stream. The length does not include the Length
field itself. The value MUST be greater than 0.

ImageTextColDim The delimiter to mark the beginning of a text or image column. The value MUST be %x00
%x00.

TiFlag The flag indicates the type of column. It MUST be either TEXTTYPE or IMAGETYPE.

ColId It contains the Column ID for the text/image column. ColId is associated only with variable-
length columns. It starts from the first variable column with ColId = %xFF and decreases by
one for each eligible column.

NumVarCols Number of variable-length columns.

RowNum The row number of the current row. The TDS 4.2 server SHOULD ignore this field.

RowLen The length of the current ColData field. The value MUST be identical to the Length field in
RowData.

FixedColData The actual data for a fixed-length column. It repeats for all fixed-length columns in the
specific table for the operation, in the order defined in the table.

Paddings Padding data. The server SHOULD ignore this field. When parsing the data, the server
SHOULD get FixedColData from the beginning of ColData and get VarColData based on Offset
and Adjust, with the assumption that Offset is the last field in ColData.

VarColData The actual data for a variable-length column. It repeats for all variable-length columns,
excluding text and image columns, in the specific table for the operation. It contains only the
data part of TYPE_VARBYTE defined for the corresponding type. The length of VarColData is
determined by Adjust and Offset fields as described in the following paragraphs. This field is
skipped if the data for a column is NULL; that is, the length for a column is calculated to be
0.

Adjust The n-th Adjust byte, counted from right backward (n>=1), contains the column number of
the first variable length column which starts in the (n+1)-st 256 byte block of the record.
The Adjust field has as many bytes as the number of 256 byte blocks in the ColData. Hence,

the rightmost Adjust byte contains the column number of the first variable length column
whose offset starts in the 2nd block. The next Adjust byte contains the column number of the
first variable length column whose offset starts in the 3rd block, and do on. The last (or
only) Adjust byte contains NumVarCols +1.

Offset It contains the starting offset for each variable-length column. These bytes are in reverse
order of the column creation order; that is, the last offset byte is for the first variable
column. This byte, as adjusted by the Adjust table bytes, is the starting offset for the
column's data in ColData. The length is determined by calculating the offset of the next
column (previous offset byte) minus the starting offset. If the length is 0, the column is
NULL. The leftmost offset byte contains the offset to the end of ColData.

33 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

2.2.6.2 Bulk Load Update Text/Write Text

Stream Name

 BulkLoadUTWT

Stream Function

Describes the format of bulk-loaded data with UPDATETEXT or WRITETEXT. The length is the length of
the data followed by the data itself.

Stream Comments

 The packet header type is 0x07.

 This message sent to the server contains bulk data to be inserted. The client MUST have
previously notified the server with a WRITETEXT BULK [MSDN-WRITETEXT] or UPDATETEXT BULK
[MSDN-UPDATETEXT] SQL statement.

 The server returns a RETURNVALUE token containing the new timestamp for this column.

Stream-Specific Rules

 BulkData =L_VARBYTE

Sub Message Definition

 BulkLoadUTWT = BulkData

Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

BulkData Contains the BulkData length and BulkData data within the L_VARBYTE.

2.2.6.3 LOGIN

Stream Name

 LOGIN

Stream Function

Defines the login record rules for use with SQL Server.

Stream Comments

 The packet header type is 0x02.

https://go.microsoft.com/fwlink/?LinkId=154269
https://go.microsoft.com/fwlink/?LinkId=154272

34 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 The length of a LOGIN record needs to be larger than 563 bytes and needs to be smaller than 573
bytes.

Stream-Specific Rules

 HostName = 30BYTE
 cbHostName = BYTE
 UserName = 30BYTE
 cbUserName = BYTE
 Password = 30BYTE
 cbPassword = BYTE
 HostProc = 8BYTE
 cbHostProc = BYTE
 AppType = 6BYTE
 lInt2 = BYTE
 lInt4 = BYTE
 lChar = BYTE
 lFloat = BYTE
 lUseDB = BYTE
 lDumpLoad = BYTE
 lInterface = BYTE
 lType = BYTE
 lDBLIDFlags = BYTE
 AppName = 30BYTE
 cbAppName = BYTE
 ServerName = 30BYTE
 cbServerName = BYTE
 RemotePassword = 255BYTE
 cbRemotePassword = BYTE
 TDSVersion = DWORD
 ProgName = 10BYTE
 cbProgName = BYTE
 ProgVersion = DWORD
 Language = 30BYTE
 cbLanguage = BYTE
 SetLanguage = BYTE
 PacketSize = 6BYTE
 cbPacketSize = BYTE
 Padding = *8BYTE

Stream Definition

 LOGIN = HostName
 cbHostName
 UserName
 cbUserName
 Password
 cbPassword
 HostProc
 16FRESERVEDBYTE
 AppType
 cbHostProc
 lInt2
 lInt4
 lChar
 lFloat
 FRESERVEDBYTE
 lUseDB
 lDumpLoad
 lInterface
 lType
 6FRESERVEDBYTE
 lDBLIBFlags
 AppName
 cbAppName
 ServerName

35 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 cbServerName
 RemotePassword
 cbRemotePassword
 TDSVersion
 ProgName
 cbProgName
 ProgVersion
 3FRESERVEDBYTE
 Language
 cbLanguage
 SetLang
 45FRESERVEDBYTE
 PacketSize
 cbPacketSize
 Padding

Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

HostName Name of the host.

UserName The user ID used to validate access to the server.

Password The password used to validate access to the server.

HostProc The host process identification in hex format.

AppType The unique client ID, for example: MAC address for the client machine.

lInt2 The byte order for all integer values exchanged between the client and the server unless

otherwise specified.

 2 The first byte is the most significant byte (680x0), big-endian

 3 The first byte is the least significant byte (VAX, 80x86), little-endian

lInt4 The type of int4 for the client. The server ought to ignore this field.

lChar The character set used on the client:

 6 CHARSET_ASCII

 7 CHARSET_EBCDIC

lFloat The type of floating point representation used by the client.

 5 FLOAT_VAX

 10 FLOAT_IEEE_754

 11 ND5000

lUseDB Set if the client desires warning messages on execution of the USE SQL statement. If this flag
is not set, the client is not informed when the database changes.

 0 USE_DB_OFF

 1 USE_DB_ON

36 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Parameter Description

lDumpLoad Set if dump/load or BCP capabilities are needed by the client.

 0 DUMPLOAD_ON

 1 DUMPLOAD_OFF

lInterface The type of SQL language that the client will send to the server. Only 0 and 1 are supported
by SQL Server.

 0 LDEFSQL (Default language. For SQL Server; that is, Transact-SQL)

 1 LXSQL (Explicitly referencing Transact-SQL)

lType The source of the connection.

 0 Normal user connecting directly.

 2 User login through another server.

 4 Replication login.

 8 Integrated security user login. If this type is used, USERNAME and PASSWORD
MUST be ignored.

lDBLIBFlags Indicates whether SSPI negotiation is required.

 0x01 SSPI negotiation is required.

AppName The name of the application.

ServerName The network name for the server the client is connecting to.

RemotePassword Remote password. The server ought to ignore the field.

TDSVersion The TDS version of the client. For TDS 4.2, the value is 0x04020000 and is sent as big-
endian.

The value ought to be ignored by the server. If the following two conditions are met, TDS 4.2
ought to be used for communication between the client and the server:

 The packet header of the LOGIN data stream is 0x02.

 The lowest byte of ProgVersion is greater than or equal to 0x06.

ProgName The name of the client program.

ProgVersion The version of the client program.

Language The name of the initial language to be used once login is complete.

SetLang A flag to request notification of language changes.

 0 = SET_LANG_OFF

 1 = SET_LANG_ON

PacketSize The desired packet size being requested by the client.

Padding Padding data to the login record. The number of bytes can be any number between 0 and 8.
The server ought to ignore this field.

37 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Login Data Validation Rules

All fields except Padding have a fixed length. Each data field has a corresponding length field that

indicates how many bytes of the data field are to be used. For example, cbHostName indicates how
many bytes of HostName are to be used. The remaining bytes of the data field are to be ignored.

2.2.6.4 PRELOGIN

Stream Name

 PRELOGIN

Stream Function

A message sent by the client to set up context for login. The server responds to a client PRELOGIN
message with a message of packet header type 0x04 and with the packet data containing a PRELOGIN
structure.

This message stream is also used to wrap the SSL handshake payload if encryption is needed. In this

scenario, where PRELOGIN message is transporting the SSL handshake payload, the packet data is
simply the raw bytes of the SSL handshake payload.

Stream Comments

 The packet header is type 0x12.

 A sample PRELOGIN message is shown in section 4.1.

Stream-Specific Rules

 UL_VERSION = ULONG ; version of the sender
 US_SUBBUILD = USHORT ; sub-build number of the sender
 B_FENCRYPTION = BYTE
 B_INSTVALIDITY = *BYTE / %x00 ; name of SQL Server instance
 ; or just %x00
 UL_THREADID = ULONG ; client application thread id
 ; used for debugging purposes
 TERMINATOR = %xFF ; signals end of PRELOGIN message
 PL_OPTION_DATA = *BYTE ; actual data for the option
 PL_OFFSET = USHORT ; big endian
 PL_OPTION_LENGTH = USHORT ; big endian
 PL_OPTION_TOKEN = BYTE ; token value representing the option
 PRELOGIN_OPTION = (PL_OPTION_TOKEN
 PL_OFFSET
 PL_OPTION_LENGTH)
 /
 TERMINATOR
 SSL_PAYLOAD = *BYTE ; SSL handshake raw payload

Stream Definition

 PRELOGIN = (*PRELOGIN_OPTION
 *PL_OPTION_DATA)
 /
 SSL_PAYLOAD

PL_OPTION_TOKEN is described in the following table.

38 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

PL_OPTION_TOKEN Value Description

VERSION 0x00 PL_OPTION_DATA = UL_VERSION

 US_SUBBUILD

The server can use the VERSION sent by the client to the server for debugging
purposes or can ignore the value. The client can use the VERSION returned
from the server to determine which features SHOULD be enabled or disabled.
The client SHOULD do this only if it can determine whether a feature is
supported by the current version of the database.

ENCRYPTION 0x01 PL_OPTION_DATA = B_FENCRYPTION

INSTOPT 0x02 PL_OPTION_DATA = B_INSTVALIDITY

THREADID 0x03 PL_OPTION_DATA = UL_THREADID

This value SHOULD be empty when being sent from the server to the client.

TERMINATOR 0xFF Termination token.

Notes

 PL_OPTION_TOKEN VERSION MUST be the first token sent as part of PRELOGIN.

 TERMINATOR does not include length and offset specifiers.

 If encryption is agreed upon during pre-login, SSL negotiation between client and server happens
immediately after the PRELOGIN packet. Then, login proceeds. For additional information, see
section 3.3.5.1.

 A PRELOGIN message that wraps the SSL_PAYLOAD occurs only after the initial PRELOGIN
message containing the PRELOGIN_OPTION and PL_OPTION_DATA information.

Encryption

During the pre-login handshake, the client and the server negotiate the wire encryption to be used.

The possible encryption option values are described in the following table.

Setting Value Description

ENCRYPT_OFF 0x00 Encryption is available but off.

ENCRYPT_ON 0x01 Encryption is available and on.

ENCRYPT_NOT_SUP 0x02 Encryption is not available.

ENCRYPT_REQ 0x03 Encryption is required.

The client sends the server the value ENCRYPT_OFF, ENCRYPT_NOT_SUP, or ENCRYPT_ON. Depending
upon whether the server has encryption available and enabled, the server responds with an
ENCRYPTION value in the response according to the following table.

Client
Server
ENCRYPT_OFF Server ENCRYPT_ON Server ENCRYPT_NOT_SUP

ENCRYPT_OFF ENCRYPT_OFF ENCRYPT_REQ ENCRYPT_NOT_SUP

ENCRYPT_ON ENCRYPT_ON ENCRYPT_ON ENCRYPT_NOT_SUP (connection
terminated)

ENCRYPT_NOT_SUP ENCRYPT_NOT_SUP ENCRYPT_REQ (connection ENCRYPT_NOT_SUP

39 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Client
Server
ENCRYPT_OFF Server ENCRYPT_ON Server ENCRYPT_NOT_SUP

terminated)

The server requires the client to behave in the manner that is described in the following table.

Client

Value returned
from server is
ENCRYPT_OFF

Value returned
from server is
ENCRYPT_ON

Value returned
from server is
ENCRYPT_REQ

Value returned from
server is
ENCRYPT_NOT_SUP

ENCRYPT_OFF Encrypt login
packet only

Encrypt entire
connection

Encrypt entire
connection

No encryption

ENCRYPT_ON Error (connection
terminated)

Encrypt entire
connection

Encrypt entire
connection

Error (connection
terminated)

ENCRYPT_NOT_SUP Invalid response
(connection
terminated)

Invalid response
(connection
terminated)

Error (connection
terminated)

No encryption

If the client and server negotiate to enable encryption, an SSL handshake takes place immediately
after the initial PRELOGIN/table response message exchange. The SSL payloads MUST be
transported as data in TDS 4.2 buffers with the message type set to 0x12 in the packet header. The
following is an example.

 0x 12 01 00 4e 00 00 00 00// Buffer Header
 0x 16 03 01 00 &// SSL payload

This applies to SSL traffic. Upon successful completion of the SSL handshake, the client proceeds to

send the LOGIN stream to the server to initiate authentication.

Instance Name

If available, the client can send the server the name of the instance to which it is connecting as a
NULL-terminated multi-byte character set (MBCS) string in the INSTOPT option. If the string is non-
empty, the server compares it to its instance name (in the server's locale) and if there is a mismatch,
the server returns an INSTOPT option containing a byte with the value of 1 in the pre-login table
response message. Otherwise, the server returns an INSTOPT option containing a byte with the value

of 0. The client can then use this information for verification purposes and could terminate the
connection if the instance name is incorrect.

2.2.6.5 RPC Request

Stream Name

 RPCRequest

Stream Function

Request to execute an RPC.

Stream Comments

 The packet header type is 0x03.

40 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 To execute an RPC on the server, the client sends an RPCRequest data stream to the server. This
is a binary stream that contains the RPC Name (or ProcID), Options, and Parameters. Each RPC

MUST be contained within a separate message and not mixed with other SQL statements.

 A sample RPCRequest message is shown in section 4.6.

Stream-Specific Rules

 ProcName = B_VARCHAR
 fWithRecomp = BIT
 fNoMetaData = BIT
 OptionFlags = fWithRecomp
 fNoMetaData
 14FRESERVEDBIT

 fByRefValue = BIT
 fDefaultValue = BIT
 StatusFlags = fByRefValue
 fDefaultValue
 6FRESERVEDBIT

 ParamMetaData = B_VARCHAR
 StatusFlags
 TYPE_INFO
 ParamLenData = TYPE_VARBYTE

 ParameterData = ParamMetaData
 ParamLenData;

 BatchFlag = %x80

 RPCReqBatch = ProcName
 OptionFlags
 *ParameterData

Stream Definition

 RPCRequest = RPCReqBatch
 *(BatchFlag RPCReqBatch)
 [BatchFlag]

Note that RpcReqBatch is repeated once for each RPC in the batch.

Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

ProcName The procedure name.

OptionFlags Bit flags in least significant bit order:

 fWithRecomp: 1 if RPC is sent with the "with recompile" option.

 fNoMetaData: 1 if no metadata will be returned for the result set.

StatusFlags Bit flags in least significant bit order:

 fByRefValue: 1 if the parameter is passed by reference (OUTPUT parameter) or 0 if the

41 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Parameter Description

parameter is passed by value.

 fDefaultValue: 1 if the parameter being passed will be the default value.

ParameterData The parameter name length and parameter name (within B_VARCHAR), the TYPE_INFO of the
RPC data, and the type-dependent data for the RPC (within TYPE_VARBYTE).

BatchFlag Distinguishes the start of the next RPC from another parameter within the current RPC. The
BatchFlag element MUST be present when another RPC request is in the current batch.
BatchFlag SHOULD NOT be sent after the last RPCReqBatch. If BatchFlag is received after the
last RPCReqBatch is received, the server MUST ignore it.

2.2.6.6 SQLBatch

Stream Name

 SQLBatch

Stream Function

Describes the format of the SQL batch message.

Stream Comments

 The packet header type is 0x01.

 A sample SQLBatch message is shown in section 4.4.

Stream-Specific Rules

 SQLText = BYTESTREAM

Stream Definition

 SQLBatch = SQLText

The byte stream contains the text of the SQL batch. The following is an example of a valid value for
SQLText.

 Select author_id from Authors

2.2.6.7 SSPI Message

 Stream Name

 SSPIMessage

Stream Function

42 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

A request to supply data for Security Support Provider Interface (SSPI) security. Note that SSPI
uses the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) negotiation. For more

information, see [RFC4178].

Stream Comments

 The packet header type is 0x11.

 If the client requested integrated authentication in the LOGIN message, the server MUST return an
SSPI token that contains the SSPI signature<3> of the client driver that the server is supposed to
talk to. The client MUST disconnect if the SSPI signature does not match its local value.

 If the SSPI signature matches, the client MUST send the SSPI message, which contains the initial
SSPI data block (the initial SPNEGO security token), to the server. The server MUST respond with
an SSPI token that is the SPNEGO security token response from the server. The client MUST

respond with another SSPIMessage, after calling the SPNEGO interface with the server's response.

 This continues until completion or an error occurs.

 The server completes the SSPI validation and returns a LOGINACK token to confirm the login.

 A sample SSPIMessage message is shown in section 4.9.

Stream-Specific Rules

 SSPIData = BYTESTREAM

Stream Definition

 SSPIMessage = SSPIData

Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

SSPIData The SSPI data. The length of the data is determined by the Length field in the header.

2.2.6.8 Transaction Manager Request

Stream Name

 TransMgrReq

Stream Function

Request to perform transaction coordination through a Distributed Transaction Coordinator (DTC)
implemented to the Microsoft DTC Interface Specification. For more information, see [MSDN-DTC].

Stream Comments

 The packet header type is 0x0E.

https://go.microsoft.com/fwlink/?LinkId=90461
https://go.microsoft.com/fwlink/?LinkId=89994

43 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 A sample transaction manager request message is shown in section 4.11.

Stream-Specific Rules

 RequestType = USHORT

Stream Definition

 TransMgrReq = RequestType
 RequestPayload

RequestPayload details are described in the following table.

Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

RequestType The types of transaction manager operations requested by the client are specified below. If an
unknown Type is specified, the message receiver SHOULD disconnect the connection.

 0 = TM_GET_DTC_ADDRESS. Returns the DTC network address as a result set with a
single-column, single-row binary value.

 1 = TM_PROPAGATE_XACT. Imports the DTC transaction into the server and returns a
local transaction descriptor as a varbinary result set.

RequestPayload
 For RequestType TM_GET_DTC_ADDRESS: The RequestPayload SHOULD be a zero-length

US_VARBYTE.

 For RequestType TM_PROPAGATE_XACT: Data contains an opaque buffer used by the
server to enlist in a DTC transaction (for more information, see [MSDN-DTC]).

2.2.7 Packet Data Token Stream Definition

This section describes the various tokens supported in a token-based packet data stream, as
described in section 2.2.4.2. The corresponding message types that use token-based packet data
streams are identified in the table in section 2.2.4.

2.2.7.1 ALTFMT

Token Stream Name

 ALTFMT

Token Stream Function

Describes the data type and length of column data that result from a SQL statement that generates
totals.

Token Stream Comments

44 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 The token value is 0xA8.

 This token is used to tell the client the data type and length of the total column data. It describes

the format of the data found in an ALTROW data stream.

 ALTNAME and ALTFMT data streams are grouped together. If the SQL statement generates more

than one total, there is still exactly one ALTNAME data stream that carries all total columns and
one ALTFMT data stream that caries all total formats for each set of totals.

 If the SQL statement generates more than one set of totals, the ALTNAME data streams and
ALTFMT data streams arrive in pairs (for example, ALTNAME, ALTFMT, ALTNAME, ALTFMT).

 This stream does not occur without a preceding COLNAME and COLFMT pair, though there might
be COLINFO and TABNAME streams in between.

Token Stream-Specific Rules

 TokenType = BYTE
 Length = USHORT
 Id = USHORT
 CAltCols = BYTE

 ByCols = BYTE
 Op = BYTE
 Operand = BYTE
 UserType = USHORT
 fNullable = BIT
 fCaseSen = BIT
 usUpdateable = 2BIT ; 0 = ReadOnly
 ; 1 = Read/Write
 ; 2 = Unused
 fIdentity = BIT
 usReservedODBC = 2BIT
 Flags = fNullable
 fCaseSen
 usUpdateable
 fIdentity
 FRESERVEDBIT
 usReservedODBC
 8FRESERVEDBIT
 TableName = B_VARCHAR
 ColNum = BYTE
 ComputeData = Op
 Operand
 UserType
 Flags
 TYPE_INFO
 [TableName]

The TableName field is specified only if text or image columns are included in the result set.

Token Stream Definition

 ALTFMT = TokenType
 Length
 Id
 CAltCols
 <CAltCols>ComputeData
 ByCols
 <ByCols>ColNum

Token Stream Parameter Details

45 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Token stream parameter details are described in the following table.

Parameter Description

TokenType ALTFMT_TOKEN

Length The number of bytes in the token stream excluding the TokenType and Length fields.

Id The ID of the SQL statement to which the total column formats apply. This ID lets the client
correctly interpret later ALTROW data streams.

CAltCols The number of column data in the data stream.

ByCols The number of grouping columns in the SQL statement that generates totals. For example, the SQL
clause "compute count(sales) by year, month, division, department" has four grouping columns.

Op The type of aggregate operator.

AOPCNT = %x4B ; Count of rows (COUNT)

AOPSUM = %x4D ; Sum of the values in the rows (SUM)

AOPAVG = %x4F ; Average of the values in the rows (AVG)

AOPMIN = %x51 ; Minimum value of the rows (MIN)

AOPMAX = %x52 ; Maximum value of the rows (MAX)

Operand The column number, starting from 1, in the result set that is the operand for the aggregate
operator.

UserType The user type ID of the data type of the column.

Flags These bit flags are described in least significant bit order. With the exception of fNullable, all of
these bit flags SHOULD be set to zero. Refer to section 2.2.7.5 for a description of each bit flag:

 fCaseSens

 fNullable is a bit flag; set to 1 if the column is nullable

 usUpdateable

 fIdentity

 usReservedODBC

TableName See section 2.2.7.5 for a description of TableName. This field MUST never be sent, because SQL
statements that generate totals exclude TEXT/IMAGE.

ColName The column name. Contains the column name length and column name.

ColNum The column number as it appears in the COLFMT data stream. ColNum appears ByCols times.

2.2.7.2 ALTNAME

Token Stream Name

ALTNAME

Token Stream Function

Describes the column names of the SQL statement that generates totals.

Token Stream Comments

46 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 The token value is 0xa7.

 This token is used to tell the client how many total columns are being returned to the client for a

particular SQL statement that generates totals. It also indicates the column names for each total
column.

 ALTNAME and ALTFMT data streams are grouped together. If the SQL statement generates more
than one total, there is still exactly one ALTNAME data stream that carries all total columns and
one ALTFMT data stream that carries all total formats for each set of totals. .

 If the SQL statement generates more than one set of totals, the ALTNAME data streams and
ALTFMT data streams arrive in pairs (for example, ALTNAME, ALTFMT, ALTNAME, ALTFMT).

 This stream does not occur without a preceding COLNAME and COLFMT pair, though there might
be COLINFO and TABNAME streams in between.

Token Stream-Specific Rules

 TokenType = BYTE
 Length = USHORT
 Id = USHORT
 ColNameData = B_VARCHAR

Token Stream Definition

 ALTNAME = TokenType
 Length
 Id
 1*ColNameData

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ALTNAME_TOKEN

Id The ID of the SQL statement that generates totals to which the total column formats apply.

ColNameData The column name for each total column.

2.2.7.3 ALTROW

Token Stream Name

 ALTROW

Token Stream Function

Used to send a complete row of total data, where the data format is provided by the ALTMNAME and
ALTFMT tokens.

Token Stream Comments

47 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 The token value is 0xD3.

 The ALTROW token is similar to the ROW_TOKEN, but also contains an Id field. This Id matches an

Id given in ALTFMT (one Id for each SQL statement). This provides the mechanism for matching
row data with correct SQL statements.

Token Stream-Specific Rules

 TokenType = BYTE
 Id = USHORT
 Data = TYPE_VARBYTE
 ComputeData = Data

Token Stream Definition

 ALTROW = TokenType
 Id
 1*ComputeData

The ComputeData element is repeated Count times (where Count is specified in ALTFMT_TOKEN).

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ALTROW_TOKEN

Id The ID of the SQL statement that generates totals to which the total column formats apply.

Data The actual data for the column. The TYPE_INFO information describing the data type of this data is
given in the preceding ALTFMT_TOKEN.

2.2.7.4 COLINFO

Token Stream Name

 COLINFO

Token Stream Function

Describes the column information in browse mode (for more information, see [MSDN-BROWSE]),
sp_cursoropen, and sp_cursorfetch.

Token Stream Comments

 The token value is 0xA5.

 The TABNAME token contains the actual table name associated with COLINFO.

Token Stream Specific Rules

 TokenType = BYTE
 Length = USHORT

https://go.microsoft.com/fwlink/?LinkId=140931

48 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 ColNum = BYTE
 TableNum = BYTE
 Status = BYTE
 ColName = B_VARCHAR
 ColProperty = ColNum
 TableNum
 Status
 [ColName]

The ColInfo element is repeated for each column in the result set.

Token Stream Definition

 COLINFO = TokenType
 Length
 1*CpLProperty

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType COLINFO_TOKEN

Length The actual data length, in bytes, of the ColProperty stream. The length does not include the token
type and the length field.

ColNum The column number in the result set.

TableNum The number of the base table that the column was derived from. The value is 0 if the value of
Status is EXPRESSION.

Status 0x4: EXPRESSION (the column was the result of an expression).

0x8: KEY (the column is part of a key for the associated table).

0x10: HIDDEN (the column was not requested, but was added because it was part of a key for the
associated table).

0x20: DIFFERENT_NAME (the column name is different from the requested column name if there is

a column alias).

ColName The base column name. This occurs only if DIFFERENT_NAME is set in Status.

2.2.7.5 COLFMT

Token Stream Name

 COLFMT

Token Stream Function

Describes the data type and length of the column data for ROWs that follow in the data stream.

Token Stream Comments

 The token value is 0xA1.

49 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 This token is used to tell the client the data type and length of the column data. It describes the
format of the data found in a ROW data stream.

 All COLFMT data streams are grouped together.

Token Stream-Specific Rules

 TokenType = BYTE
 UserType = USHORT
 fNullable = BIT
 fCaseSen = BIT
 usUpdateable = 2BIT ; 0 = ReadOnly
 ; 1 = Read/Write
 ; 2 = Unused
 fIdentity = BIT
 usReservedODBC = 2BIT
 Flags = fNullable
 fCaseSen
 usUpdateable
 fIdentity
 FRESERVEDBIT
 usReservedODBC
 8FRESERVEDBIT
 TableName = US_VARCHAR
 ColFmtData = UserType
 Flags
 TYPE_INFO
 [TableName]

The TableName element is specified only if text or image columns are included in the result set.

Token Stream Definition

 COLFMT = TokenType
 Length
 1*ColFmtData

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType COLFMT_TOKEN

Length The number of bytes in the token stream, excluding the TokenType and Length fields.

UserType The user type ID of the column’s data type.

Flags Bit flags in least significant bit order:

 fCaseSen is a bit flag. Set to 1 if the column is case sensitive for searches

 fNullable is a bit flag. Its value is 1 if the column is nullable.

 usUpdateable is a 2-bit field. Its value is 0 if column is read-only, 1 if column is read/write,
and 2 if updateability is unknown.<4>

 fIdentity is a bit flag. Its value is 1 if the column is an identity column.

 usReservedODBC is a 2-bit field that is used by ODS gateways supporting the ODBC ODS
gateway driver.

50 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Parameter Description

TableName The fully qualified base table name for this column. Contains the table name length and table
name. This exists only for text and image columns.

2.2.7.6 COLNAME

Token Stream Name

 COLNAME

Token Stream Function

Describes the column names of the returning rows.

Token Stream Comments

 The token value is 0xA0.

 This token is used to tell the client how many columns of data are being returned to the client. It
also indicates the column names for each column of data.

 All COLNAME data streams are grouped together.

Token Stream-Specific Rules

 TokenType = BYTE
 Length = USHORT
 ColNameData = B_VARCHAR

Token Stream Definition

 COLNAME = TokenType
 Length
 1*ColNameData

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType COLNAME_TOKEN

Length The number of bytes in the token stream, excluding the TokenType and Length fields.

ColNameData The column name for each column.

2.2.7.7 DONE

Token Stream Name

51 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 DONE

Token Stream Function

Indicates the completion status of a SQL statement.

Token Stream Comments

 The token value is 0xFD.

 This token is used to indicate the completion of a SQL statement. Because multiple SQL
statements can be sent to the server in a single SQL batch, multiple DONE tokens might be
generated. In this case, all but the final DONE token will have a Status value with the

DONE_MORE bit set (details follow).

 A DONE token is returned for each SQL statement in the SQL batch, except for variable
declarations.

 For execution of SQL statements within stored procedures, DONEPROC and DONEINPROC
tokens are used in place of DONE tokens.

Token Stream-Specific Rules

 TokenType = BYTE
 Status = USHORT
 CurCmd = USHORT
 DoneRowCount = LONG

Token Stream Definition

 DONE = TokenType
 Status
 CurCmd
 DoneRowCount

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType DONE_TOKEN

Status The Status field MUST be a bitwise "OR" of the following:

 0x00: DONE_FINAL (this DONE is the final DONE in the request).

 0x1: DONE_MORE (this DONE message is not the final DONE message in the response;
subsequent data streams to follow).

 0x2: DONE_ERROR (an error occurred on the current SQL statement).

 0x4: DONE_INXACT (a transaction is in progress).<5>

 0x10: DONE_COUNT (the DoneRowCount value is valid; this is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable).

 0x20: DONE_ATTN (the DONE message is a server acknowledgement of a client

52 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Parameter Description

ATTENTION message.)

 0x100: DONE_SRVERROR (used in place of DONE_ERROR when an error occurred on the
current SQL statement that is severe enough to require the result set, if any, to be
discarded).

CurCmd The token of the current SQL statement.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount is
valid only if the value of Status includes DONE_COUNT.

2.2.7.8 DONEINPROC

Token Stream Name

 DONEINPROC

Token Stream Function

Indicates the completion status of a SQL statement within a stored procedure.

Token Stream Comments

 The token value is 0xFF.

 A DONEINPROC token is sent for each executed SQL statement within a stored procedure.

 A DONEINPROC token MUST be followed by another DONEPROC token or a DONEINPROC token.

Token Stream-Specific Rules

 TokenType = BYTE
 Status = USHORT
 CurCmd = USHORT
 DoneRowCount = LONG

Token Stream Definition

 DONEINPROC = TokenType
 Status
 CurCmd
 DoneRowCount

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType DONEINPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

53 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Parameter Description

 0x1: DONE_MORE (this DONEINPROC message is not the final
DONE/DONEPROC/DONEINPROC message in the response; more data streams are to
follow).

 0x2: DONE_ERROR (an error occurred on the current SQL statement, or execution of a
stored procedure was interrupted.).

 0x4: DONE_INXACT (a transaction is in progress).<6>

 0x10: DONE_COUNT (the DoneRowCount value is valid; this is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable).

 0x100: DONE_SRVERROR (used in place of DONE_ERROR when an error occurred on the
current SQL statement that is severe enough to require the result, if any, to be discarded).

CurCmd The token of the current SQL statement.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount is
valid if the value of Status includes DONE_COUNT.

2.2.7.9 DONEPROC

Token Stream Name

 DONEPROC

Token Stream Function

Indicates the completion status of a stored procedure. This is also generated for stored procedures

executed through SQL statements.

Token Stream Comments

 The token value is 0xFE.

 A DONEPROC token is sent when all the SQL statements within a stored procedure have been
executed.

 A DONEPROC token can be followed by another DONEPROC token or a DONEINPROC only if the
DONE_MORE bit is set in the Status value.

 There is a separate DONEPROC token sent for each stored procedure that is called.

Token Stream-Specific Rules

 TokenType = BYTE
 Status = USHORT
 CurCmd = USHORT
 DoneRowCount = LONG

Token Stream Definition

 DONEPROC = TokenType
 Status

54 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 CurCmd
 DoneRowCount

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType DONEPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

 0x00: DONE_FINAL (this DONEPROC is the final DONEPROC in the request).

 0x1: DONE_MORE (this DONEPROC message is not the final DONEPROC message in the
response; more data streams are to follow).

 0x2: DONE_ERROR (an error occurred on the current stored procedure).

 0x4: DONE_INXACT (a transaction is in progress).<7>

 0x10: DONE_COUNT (the DoneRowCount value is valid; this is used to distinguish between
a valid value of 0 for DoneRowCount or just an initialized variable).

 0x80: DONE_RPCINBATCH (this DONEPROC message is associated with an RPC within a set
of batched RPCs; this flag is not set on the last RPC in the RPC batch).

 0x100: DONE_SRVERROR (used in place of DONE_ERROR when an error occurred on the
current stored procedure that is severe enough to require the result set, if any, to be
discarded).

CurCmd The token of the SQL statement for executing stored procedures.

DoneRowCount The count of rows that were affected by the command. The value of DoneRowCount is valid if
the value of Status includes DONE_COUNT.

2.2.7.10 ENVCHANGE

Token Stream Name

 ENVCHANGE

Token Stream Function

A notification of an environment change (such as database and language).

Token Stream Comments

 The token value is 0xE3.

 Includes old and new environment values.

Token Stream-Specific Rules

 TokenType = BYTE
 Length = USHORT

55 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 Type = BYTE
 NewValue = B_VARBYTE
 OldValue = B_VARBYTE
 EnvValueData = Type
 NewValue
 OldValue

Token Stream Definition

 ENVCHANGE = TokenType
 Length
 EnvValueData

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ENVCHANGE_TOKEN

Length The total length of the ENVCHANGE data stream (EnvValueData).

Type The type of environment change:

1: Database

2: Language

3: Character set

4: Packet size

Type Old value New value

1: Database OLDVALUE = B_VARBYTE NEWVALUE = B_VARBYTE

2: Language OLDVALUE = B_VARBYTE NEWVALUE = B_VARBYTE

3: Character set OLDVALUE = B_VARBYTE NEWVALUE = B_VARBYTE

4: Packet size OLDVALUE = B_VARBYTE NEWVALUE = B_VARBYTE

Note

For types 1, 2, and 3, the payload is an MBCS string; the LENGTH always reflects the number of
bytes.

2.2.7.11 ERROR

Token Stream Name

 ERROR

Token Stream Function

Used to send an error message to the client.

56 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Token Stream Comments

 The token value is 0xAA.

Token Stream-Specific Rules

 TokenType = BYTE
 Length = USHORT
 Number = LONG
 State = BYTE
 Class = BYTE
 MsgText = US_VARCHAR
 ServerName = B_VARCHAR
 ProcName = B_VARCHAR
 LineNumber = USHORT

Token Stream Definition

 ERROR = TokenType
 Length
 Number
 State
 Class
 MsgText
 ServerName
 ProcName
 LineNumber

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ERROR_TOKEN

Length The total length of the ERROR data stream, in bytes.

Number The error number.<8>

State The error state, used as a modifier to the error number.

Class The class (severity) of the error. A class of less than 10 indicates an informational message.

MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and the stored procedure name using B_VARCHAR format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers begin
at 1; therefore, if the line number is not applicable to the message, the value of LineNumber will
be 0.

Class
level Description

0-9 Informational messages that return status information or report errors that are not severe.<9>

57 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Class
level Description

10 Informational messages that return status information or report errors that are not severe.<10>

11-16 Errors that can be corrected by the user.

11 The given object or entity does not exist.

12 A special severity for SQL statements that do not use locking because of special options. In some cases,
read operations performed by these SQL statements could result in inconsistent data, because locks do
not guarantee consistency.

13 Transaction-deadlock errors.

14 Security-related errors, such as permission denied.

15 Syntax errors in the SQL statement.

16 General errors that can be corrected by the user.

17-19 Software errors that cannot be corrected by the user. These errors require system administrator action.

17 The SQL statement caused the database server to run out of resources (such as memory, locks, or disk
space for the database) or to exceed some limit set by the system administrator.

18 There is a problem in the database engine software, but the SQL statement completes execution, and
the connection to the instance of the database engine is maintained. System administrator action is
required.

19 A nonconfigurable database engine limit has been exceeded, and the current SQL batch has been
terminated. Error messages with a severity level of 19 or higher stop the execution of the current SQL
batch. Severity level 19 errors are rare and have to be corrected by the system administrator. Error
messages with a severity level from 19 through 25 are written to the error log.

20-25 System problems have occurred. These are fatal errors, which means that the database engine task
that was executing a SQL batch is no longer running. The task records information about what occurred
and then terminates. In most cases, the application connection to the instance of the database engine
will also terminate. If this happens, depending on the problem, the application might not be able to
reconnect.

Error messages in this range can affect all of the processes accessing data in the same database and
might indicate that a database or object is damaged. Error messages with a severity level from 19
through 25 are written to the error log.

20 An SQL statement has encountered a problem. Because the problem has affected only the current task,
it is unlikely that the database itself has been damaged.

21 A problem has been encountered that affects all tasks in the current database, but it is unlikely that the
database itself has been damaged.

22 The table or index specified in the message has been damaged by a software or hardware problem.

Severity level 22 errors occur rarely. If one occurs, run DBCC CHECKDB to determine whether other
objects in the database are also damaged. The problem might be in the buffer cache only and not on
the disk itself. If so, restarting the instance of the database engine corrects the problem. To continue
working, reconnect to the instance of the database engine; otherwise, use DBCC to repair the problem.
In some cases, restoration of the database might be required.

If restarting the instance of the database engine does not correct the problem, the problem is on the
disk. Sometimes destroying the object specified in the error message can solve the problem. For
example, if the message reports that the instance of the database engine has found a row with a length

of 0 in a non-clustered index, delete the index and rebuild it.

23 The integrity of the entire database is in question because of a hardware or software problem.

Severity level 23 errors occur rarely. If one occurs, run DBCC CHECKDB to determine the extent of the
damage. The problem might be in the cache only and not on the disk itself. If so, restarting the

58 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Class
level Description

instance of the database engine corrects the problem. To continue working, reconnect to the instance of
the database engine; otherwise, use DBCC to repair the problem. In some cases, restoration of the
database might be required.

24 A media failure occurred. The system administrator might have to restore the database or resolve a
hardware issue.

If an error is produced within a result set, the ERROR token is sent before the DONE token for the SQL
statement, and the DONE token is sent with the error bit set.

2.2.7.12 INFO

Token Stream Name

 INFO

Token Stream Function

Used to send an information message to the client.

Token Stream Comments

 The token value is 0xAB.

Token Stream-Specific Rules

 TokenType = BYTE
 Length = USHORT
 Number = LONG
 State = BYTE
 Class = BYTE
 MsgText = US_VARCHAR
 ServerName = B_VARCHAR
 ProcName = B_VARCHAR
 LineNumber = USHORT

Token Stream Definition

 INFO = TokenType
 Length
 Number
 State
 Class
 MsgText
 ServerName
 ProcName
 LineNumber

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType INFO_TOKEN

59 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Parameter Description

Length The total length of the INFO data stream, in bytes.

Number The info number.<11>

State The error state, used as a modifier to the info Number.

Class The class (severity) of the error. A class of less than 10 indicates an informational message.

MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and the stored procedure name using B_VARCHAR format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers begin
at 1; therefore, if the line number is not applicable to the message as determined by the upper
layer, the value of LineNumber is 0.

2.2.7.13 LOGINACK

Token Stream Name

 LOGINACK

Token Stream Function

Used to send a response to a login request to the client.

Token Stream Comments

 The token value is 0xAD.

 If a LOGINACK is not received by the client as part of the login procedure, the logon to the server

is unsuccessful.

Token Stream-Specific Rules

 TokenType = BYTE
 Length = USHORT
 Interface = BYTE
 TDSVersion = DWORD
 ProgName = B_VARCHAR
 VersionMark = BYTE
 MajorVer = BYTE
 MinorVer = BYTE
 BuildNum = BYTE
 ProgVersion = VersionMark
 MajorVer
 MinorVer
 BuildNum

Token Stream Definition

 LOGINACK = TokenType
 Length
 Interface

60 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 TDSVersion
 ProgName
 ProgVersion

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType LOGINACK_TOKEN

Length The total length, in bytes, of the following fields: Interface, TDSVersion, ProgName, and
ProgVersion.

Interface The type of interface with which the server will accept client requests:

0: LDEFSQL (The server confirms that whatever is sent by the client is acceptable).

1: LXSQL (T-SQL is accepted).

TDSVersion The TDS 4.2 version being used by the server. This value is sent as big-endian and MUST be
0x04020000.

ProgName The name of the server software (for example, "SQL Server").

VersionMark Always set to 95.

MajorVer The major version number (0-255).

MinorVer The minor version number (0-255).

BuildNum The build number (0-255). If the build number is greater than 255, the server SHOULD send 255.

2.2.7.14 OFFSET

Token Stream Name

 OFFSET

Token Stream Function

Used to inform the client where in the client's SQL text buffer a particular keyword occurs.Token
Stream Comments

 The token value is 0x78.

Token Stream-Specific Rules:

 TokenType = BYTE
 Identifier = USHORT
 OffSetLen = USHORT

Token Stream Definition

 OFFSET = TokenType
 Identifier

61 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 OffSetLen

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType OFFSET_TOKEN

Identifier The keyword to which OffSetLen refers.

OffSetLen The offset in the SQL text buffer received by the server of the identifier. The SQL text buffer begins
with an OffSetLen value of 0 (MOD 64 kilobytes if the value of OffSet is greater than 64 kilobytes).

2.2.7.15 ORDER

Token Stream Name

 ORDER

Token Stream Function

Used to inform the client by which columns the data is ordered.

Token Stream Comments

 The token value is 0xA9.

 This token is sent only in the event that an ORDER BY clause is executed.

Token Stream-Specific Rules

 TokenType = BYTE
 Length = USHORT
 ColNum = *BYTE

The ColNum element is repeated once for each column within the ORDER BY clause.

Token Stream Definition

 ORDER = TokenType
 Length
 ColNum

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ORDER_TOKEN

62 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Parameter Description

Length The total length of the ORDER data stream.

ColNum The column number in the result set.

2.2.7.16 RETURNSTATUS

Token Stream Name

 RETURNSTATUS

Token Stream Function

Used to send the status value of an RPC to the client. The server also uses this token to send the
result status value of a stored procedure executed through SQL Batch.

Token Stream Comments

 The token value is 0x79.

 This token MUST be returned to the client when an RPC is executed by the server.

Token Stream-Specific Rules

 TokenType = BYTE
 Value = LONG

Token Stream Definition

 RETURNSTATUS = TokenType
 Value

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType RETURNSTATUS_TOKEN

Value The return status value determined by the remote procedure. The return status MUST NOT be
NULL.

2.2.7.17 RETURNVALUE

Token Stream Name

 RETURNVALUE

63 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Token Stream Function

Used to send the return value of an RPC to the client. When an RPC is executed, the associated

parameters can be defined as input or output (or "return") parameters. This token is used to send a
description of the return parameter to the client. This token is also used to describe the value returned

by a user-defined function (UDF) when executed as an RPC.

Token Stream Comments

 The token value is 0xAC.

 Multiple return values can exist according to the RPC. There is a separate RETURNVALUE token
sent for each parameter returned.

 Return parameters are sent in the order in which they are defined in the procedure.

 A UDF cannot have return parameters. As such, if a UDF is executed as an RPC, there is exactly

one RETURNVALUE token sent to the client.

Token Stream-Specific Rules

 TokenType = BYTE
 ParamName = B_VARCHAR
 Length = USHORT
 Status = BYTE
 UserType = USHORT
 fNullable = BIT
 fCaseSen = BIT
 usUpdateable = 2BIT ; 0 = ReadOnly
 ; 1 = Read/Write
 ; 2 = Unused
 fIdentity = BIT
 usReservedODBC = 2BIT
 Flags = fNullable
 fCaseSen
 usUpdateable
 fIdentity
 FRESERVEDBIT
 usReservedODBC
 8FRESERVEDBIT
 TypeInfo = TYPE_INFO
 Value = TYPE_VARBYTE

Token Stream Definition

 RETURNVALUE = TokenType
 Length
 ParamName
 Status
 UserType
 Flags
 TypeInfo
 Value

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType RETURNVALUE_TOKEN

64 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Parameter Description

Length The number of bytes in the token stream, excluding the TokenType and Length fields.

ParamName The parameter name length and parameter name (within B_VARCHAR).

Status 0x01: If ReturnValue corresponds to the OUTPUT parameter of a stored procedure invocation.

0x02: If ReturnValue corresponds to the return value of the UDF.

UserType The user type ID of the column’s data type.

Flags These bit flags are described in least significant bit order. All of these bit flags SHOULD be set to
zero. For a description of each bit flag, see section 2.2.7.5.

 fCaseSen

 fNullable

 usUpdateable<12>

 fIdentity

 usReservedODBC

TypeInfo The TYPE_INFO for the message.

Value The type-dependent data for the parameter (within TYPE_VARBYTE).

2.2.7.18 ROW

Token Stream Name

 ROW

Token Stream Function

Used to send a complete row, as defined by the COLNAME and COLFMT tokens, to the client.

Token Stream Comments

 The token value is 0xD1.

Token Stream-Specific Rules

 TokenType = BYTE
 TextPointer = B_VARBYTE
 Timestamp = 8BYTE
 Data = TYPE_VARBYTE
 ColumnData = [TextPointer Timestamp]
 Data
 AllColumnData = 1*ColumnData

The ColumnData element is repeated once for each column of data.

TextPointer and Timestamp MUST NOT be specified if the instance of type text/image is a NULL
instance (GEN_NULL).

65 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Token Stream Definition

 ROW = TokenType
 AllColumnData

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ROW_TOKEN

TextPointer The length of the text pointer and the text pointer for data.

Timestamp The timestamp of a text/image column. This is not present if the value of Data is GEN_NULL.

Data The actual data for the column. The TYPE_INFO information describing the data type of this data is
given in the preceding COLFMT_TOKEN, ALTFMT_TOKEN, or OFFSET_TOKEN.

2.2.7.19 SSPI

Token Stream Name

 SSPI

Token Stream Function

The SSPI token returned during the login process.

Token Stream Comments

 The token value is 0xED.

Token Stream-Specific Rules

 TokenType = BYTE
 SSPIBuffer = US_VARBYTE

Token Stream Definition

 SSPI = TokenType
 SSPIBuffer

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType SSPI_TOKEN

SSPIBuffer The length of the SSPIBuffer and the SSPI buffer using US_VARBYTE format.

66 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

2.2.7.20 TABNAME

Token Stream Name

 TABNAME

Token Stream Function

Used to send the table name to the client only when in browser mode or from sp_cursoropen.

Token Stream Comments

 The token value is 0xA4.

Token Stream-Specific Rules

 TokenType = BYTE
 Length = USHORT
 TableName = B_VARCHAR
 AllTableNames = 1*TableName

The TableName element is repeated once for each table name in the SQL statement.

Token Stream Definition

 TABNAME = TokenType
 Length
 AllTableNames

Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType TABNAME_TOKEN

Length The actual data length, in bytes, of the TABNAME token stream. The length does not include the
TokenType and Length fields.

TableName The name of the base table referenced in the SQL statement.

2.3 Directory Service Schema Elements

None.

67 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

3 Protocol Details

This section describes the important elements of the client software and the server software necessary
to support the TDS 4.2 protocol.

3.1 Common Details

As described in section 1.3, TDS 4.2 is an application-level protocol that is used for the transfer of
requests and responses between clients and database server systems. Messages sent by clients or
servers need to be limited to the set of messages defined in this protocol.

The TDS 4.2 server is message-oriented. After a connection has been established between the client
and server, a complete message is sent from the client to the server. Following this, a complete

response is sent from the server to the client (with the possible exception of when the client aborts
the request), and then the server waits for the next request.

Other than this Post-Login state, the states defined by the TDS 4.2 protocol are as follows: (1) pre-

authentication (Pre-Login), (2) authentication (Login), and (3) when the client sends an attention
message (Attention). These are described in subsequent sections.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

For information about the abstract data model for the client, see section 3.2.1. For information about
the abstract data model for the server, see section 3.3.1.

3.1.2 Timers

For a description of the client timer used, see section 3.2.2. For a description of the server timer used,
see section 3.3.2.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

For information about higher-layer triggered events for the client, see section 3.2.4. For information
about higher-layer triggered events for the server, see section 3.3.4.

3.1.5 Message Processing Events and Sequencing Rules

The following sequence diagrams illustrate the possible message exchange sequences between client
and server. For details about message processing events and sequencing rules for the client, see
section 3.2.5. For details about message processing events and sequencing rules for the server, see

section 3.3.5.

68 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Figure 3: Pre-Login to Post-Login sequence

69 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Figure 4: SQL batch and RPC sequence

70 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Figure 5: Transaction manager request sequence

71 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Figure 6: Bulk insert sequence

3.1.6 Timer Events

For the timer events of the client, see section 3.2.6. For the timer events of the server, see section
3.3.6.

3.1.7 Other Local Events

A TDS 4.2 session is tied to the underlying established network protocol session. As such, loss or

termination of a network connection is equivalent to immediate termination of a TDS 4.2 session.

72 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

For the other local events of the client, see section 3.2.7. For other local events of the server, see
section 3.3.7.

3.2 Client Details

The following state machine diagram describes TDS 4.2 on the client side.

Figure 7: TDS 4.2 client state machine

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

73 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

adhere to this model as long as their external behavior is consistent with what is described in this
document.

A TDS 4.2 client SHOULD maintain the following data:

 Encryption option. Possible values are no encryption, login-only encryption, and full encryption.

For more details, see the "Encryption" section of PRELOGIN.

 Authentication scheme. Possible values are standard authentication and SSPI authentication.
For more details, see the "Security and Authentication Methods" section of section 1.7.

 Connection time-out value. For more details, see Timers.

 Client request time-out value. For more details, see Timers.

 Cancel time-out value. For more details, see Timers.

 Transaction descriptor value. For more details, see section 2.2.6.8

3.2.2 Timers

A TDS 4.2 client SHOULD implement the following timers:

 Connection Timer. Controls the maximum time spent during the establishment of a TDS 4.2

connection. The default Connection time-out value SHOULD be 15 seconds. The implementation
SHOULD allow the upper layer to specify a nondefault value, including an infinite value (for
example no time-out).

 Client Request Timer. Controls the maximum time spent waiting for a message response from the
server for a client request sent after the connection has been established. The TDS 4.2 protocol
does not impose any restriction on the Client request time-out value. The implementation SHOULD
allow the upper layer to specify a nondefault value, including an infinite value (for example, no

time-out).

 Cancel Timer. Controls the maximum time spent waiting for a message cancellation
acknowledgement after an Attention request is sent to the server. The TDS 4.2 protocol does not
impose any restriction on the Cancel time-out value. The implementation SHOULD allow the upper
layer to specify a nondefault value, including an infinite value (for example, no time-out).

If a TDS 4.2 client implementation implements any of the timers, it MUST implement their behavior

according to this specification.

A TDS 4.2 client SHOULD request the transport to detect and indicate a broken connection if the
transport provides this mechanism. If the transport used is TCP, it SHOULD use the TCP keep-alives
(for more details, see [RFC1122]) in order to detect a nonresponding server if infinite connection
time-out or infinite client request time-out is used. The default values of the TCP keep-alive values set
by a TDS 4.2 client are 30 seconds of no activity until the first keep-alive packet is sent and 1 second
between when successive keep-alive packets are sent if no acknowledgement is received. The

implementation SHOULD allow the upper layer to specify other TCP keep-alive values.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

A TDS 4.2 client MUST support the following events from the upper layer:

 Connection Open Request to establish a new TDS 4.2 connection to a TDS 4.2 server.

https://go.microsoft.com/fwlink/?LinkId=112180

74 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 Client Request to send a request to a TDS 4.2 server on an already established TDS 4.2
connection. The Client Request is a message of one of the following four types: SQL Batch, Bulk

Load, transaction manager request, or an RPC.

In addition, it SHOULD support the following event from the upper layer:

 Cancel Request to cancel a client request while waiting for a server response. For example, this
enables the upper layer to cancel a long-running client request if the user/upper layer is no longer
seeking the result, thus freeing up client and server resources. If a client implementation of the
TDS 4.2 protocol supports the Cancel Request event, it MUST handle it as described in this
specification.

The processing and actions triggered by these events are described in the remaining parts of this
section.

When a TDS 4.2 client receives a Connection Open Request from the upper layer in the initial state
of a TDS 4.2 connection, it MUST perform the following actions:

 If the TDS 4.2 client implements the Connection Timer, it MUST start the Connection Timer if the

connection time-out value is not infinite.

 Send a Pre-Login message to the server, by using the underlying transport protocol.

 If the transport does not report an error, then enter the Sent Initial Pre-Login Message state.

When a TDS 4.2 client receives a Connection Open Request from the upper layer in any state other
than the initial state of a TDS 4.2 connection, it MUST indicate an error to the upper layer.

When a TDS 4.2 client receives a Client Request from the upper layer in the Logged In state it MUST
perform the following actions:

 If the TDS 4.2 client implements the Client Request Timer, it MUST start the Client Request Timer
if the client request time-out value is not infinite.

 Send either the SQL Batch, Bulk Load, transaction manager request, or RPC message to the

server. The message and its content MUST match the requested message from the Client Request.

 If the transport does not report an error, then enter the Sent Client Request state.

When a TDS 4.2 client supporting the Cancel Request receives a Cancel Request from the upper layer
in the Sent Client Request state, it MUST perform the following actions:

 If the TDS 4.2 client implements the Cancel Timer, it MUST start the Cancel Timer if the Attention
request time-out value is not infinite.

 Send an Attention message to the server. This indicates to the server that the currently executing

request SHOULD be aborted.

 Enter the Sent Attention state.

3.2.5 Message Processing Events and Sequencing Rules

The processing of messages received from a TDS 4.2 server depends on the message type and the
state the TDS 4.2 client is in. The message type is determined from the TDS 4.2 packet type and the
token stream inside the TDS 4.2 packet payload, as described in section 2.2.3. The rest of this section
describes message processing and actions that can be taken on messages.

When the TDS 4.2 client enters either the Logged In state or the final state, it MUST stop the
Connection Timer (if implemented and running), the Client Request Timer (if implemented and
running), and the Cancel Timer (if implemented and running).

75 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

When a TDS 4.2 client receives a structurally invalid TDS 4.2 message, it MUST close the underlying
transport connection, indicate an error to the upper layer, and enter the final state.

When a TDS 4.2 client receives a table response (TDS 4.2 packet type %x04) from the server, it
MUST behave as follows, according to the state of the TDS 4.2 client.

3.2.5.1 Sent Initial PRELOGIN Packet State

If the response contains a structurally valid PRELOGIN response indicating a success, the TDS 4.2
client MUST take action according to the Encryption option and Authentication scheme:

 The Encryption option MUST be handled as described in section 2.2.6.4 in the PRELOGIN message
description.

 If encryption was negotiated, the TDS 4.2 client MUST initiate a TLS/SSL handshake, send to the
server a TLS/SSL message obtained from the TLS/SSL layer encapsulated in TDS 4.2 packets of
type PRELOGIN (0x12), and enter the Sent TLS/SSL negotiation packet state.

 If encryption was not negotiated and the upper layer did not request full encryption, the TDS 4.2
client MUST send to the server a LOGIN message that includes either standard login and password

or indicates that integrated authentication SHOULD be used, and enter the Sent LOGIN record
state. The TDS 4.2 specification does not prescribe the authentication protocol if SSPI
authentication is used. The current implementation supports NTLM (for more information, see
[MSDN-NTLM]) and Kerberos (for more information, see [RFC4120]).

 If encryption was not negotiated and the upper layer requested full encryption, then the TDS 4.2
client MUST close the underlying transport connection, indicate an error to the upper layer, and
enter the final state.

 If the response received from the server does not contain a structurally valid PRELOGIN response,
or it contains a structurally valid PRELOGIN response indicating an error, the TDS 4.2 client MUST
close the underlying transport connection, indicate an error to the upper layer, and enter the final
state.

3.2.5.2 Sent TLS/SSL Negotiation Packet State

If the response contains a structurally valid TLS/SSL response message (TDS 4.2 packet Type 0x12),
the TDS 4.2 client MUST pass the TLS/SSL message contained in it to the TLS/SSL layer and MUST
proceed as follows:

 If the TLS/SSL layer indicates that further handshaking is needed, the TDS 4.2 client MUST send
to the server the TLS/SSL message obtained from the TLS/SSL layer encapsulated in TDS 4.2

packets of Type PRELOGIN (0x12).

 If the TLS/SSL layer indicates successful completion of the TLS/SSL handshake, the TDS 4.2 client
MUST send a login message to the server and enter the Sent LOGIN record state.

 If login-only encryption was negotiated in the Pre-Login message description as described in
section 2.2, the first, and only the first, TDS 4.2 packet of the login message MUST be encrypted

using TLS/SSL and encapsulated in a TLS/SSL message. All other TDS 4.2 packets sent or
received MUST be in plaintext.

 If full encryption was negotiated as described in the Pre-Login message description in section
2.2.6.4, all subsequent TDS 4.2 packets sent or received from this point on MUST be encrypted
using TLS/SSL and encapsulated in a TLS/SSL message.

 If the TLS/SSL layer indicates an error, the TDS 4.2 client MUST close the underlying transport
connection, indicate an error to the upper layer, and enter the final state.

https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=90458

76 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

If the response received from the server does not contain a structurally valid TLS/SSL response or it
contains a structurally valid response indicating an error, the TDS 4.2 client MUST close the underlying

transport connection, indicate an error to the upper layer, and enter the final state.

3.2.5.3 Sent LOGIN Record State

If standard login is used and the response received from the server contains a structurally valid login
response indicating a successful login, the TDS 4.2 client MUST indicate successful login completion to
the upper layer and enter the Logged In state.

If SPNEGO authentication is used and the response received from the server contains a correct SSPI
token (that is, the SSPI signature in the token matches the local value of the client), the TDS 4.2
client MUST send an SSPI message (TDS 4.2 packet type %x11) containing the initial data obtained
from the applicable SSPI layer and enter the Sent SSPI Record with SPNEGO Packet state. The TDS
4.2 specification does not prescribe the authentication protocol if SSPI authentication is used. The
current implementation supports NTLM (for more information, see [MSDN-NTLM]) and Kerberos (for
more information, see [RFC4120]).

If the response received from the server does not contain a structurally valid login response, or it
contains a structurally valid login response indicating login failure, or the SSPI signature received from
server in the SSPI token does not match the TDS 4.2 client's local copy of the SSPI signature when
SPNEGO authentication is used, the TDS 4.2 client MUST close the underlying transport connection,
indicate an error to the upper layer, and enter the final state.

3.2.5.4 Sent SSPI Record with SPNEGO Packet State

If the response received from the server contains a structurally valid login response indicating a
successful login, the TDS 4.2 client MUST indicate successful login completion to the upper layer and
enter the Logged In state.

If the response received from the server contains a structurally valid SSPI response message, the

TDS 4.2 client MUST send to the server an SSPI message (TDS 4.2 packet type %x11) containing the
data obtained from the applicable SSPI layer.

If the response received from the server does not contain a structurally valid login response or SSPI
response, or if it contains a structurally valid login response indicating login failure, the TDS 4.2 client
MUST close the underlying transport connection, indicate an error to the upper layer, and enter the
final state.

3.2.5.5 Logged In State

The TDS 4.2 client waits for notification from the upper layer. If the upper layer requests a message to
be sent to the server, the TDS 4.2 client MUST send the appropriate request to the server and enter
the Sent Client Request state. If the upper layer requests a termination of the connection, the TDS 4.2
client MUST disconnect from the server and enter the final state. If the TDS 4.2 client detects a

connection error from the transport layer, the TDS 4.2 client MUST disconnect from the server and
enter the final state.

3.2.5.6 Sent Client Request State

If the response received from the server contains a structurally valid response, the TDS 4.2 client
MUST indicate the result of the request to the upper layer and enter the Logged In state.

The client has the ability to return data/control to the upper layers while remaining in the Sent Client
Request state while the complete response has not been received or processed.

https://go.microsoft.com/fwlink/?LinkId=145227
https://go.microsoft.com/fwlink/?LinkId=90458

77 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

If the TDS 4.2 client supports Cancel Request, and the upper layer requests a Cancel Request to be
sent to the server, the TDS 4.2 client will send an Attention message to the server, start the Cancel

Timer, and enter the Sent Attention state.

If the response received from the server does not contain a structurally valid response, the TDS 4.2

client MUST close the underlying transport connection, indicate an error to the upper layer, and enter
the final state.

3.2.5.7 Sent Attention State

If the response is structurally valid, and it does not acknowledge the Attention as described in section
2.2.1.6, the TDS 4.2 client MUST discard any data contained in the response and remain in the Sent
Attention state.

If the response is structurally valid, and it acknowledges the Attention as described in section 2.2.1.6,
the TDS 4.2 client MUST discard any data contained in the response, indicate the completion of the
message to the upper layer together with the cause of the Attention (either an upper-layer
cancellation as described in section 3.2.4 or a message time-out as described in section 3.2.2), and

enter the Logged In state.

If the response received from the server is not structurally valid, then the TDS 4.2 client MUST close
the underlying transport connection, indicate an error to the upper layer, and enter the final state.

3.2.5.8 Final State

The connection is disconnected. All resources for this connection will be recycled by the TDS 4.2
server.

3.2.6 Timer Events

If a TDS 4.2 client implements the Connection Timer and the timer times out, the TDS 4.2 client MUST
close the underlying connection, indicate the error to the upper layer, and enter the final state.

If a TDS 4.2 client implements the Client Request Timer and the timer times out, the TDS 4.2 client
MUST send an Attention message to the server and enter the Sent Attention state.

If a TDS 4.2 client implements the Cancel Timer and the timer times out, the TDS 4.2 client MUST
close the underlying connection, indicate the error to the upper layer, and enter the final state.

3.2.7 Other Local Events

Whenever an indication of a connection error is received from the underlying transport, the TDS 4.2
client MUST close the transport connection, indicate an error to the upper layer, stop any timers if
they are running, and enter the final state. If TCP is used as the underlying transport, examples of
events that might trigger such action—depending on the actual TCP implementation—include media

sense loss, a TCP connection going down in the middle of communication, or a TCP keep-alive failure.

3.3 Server Details

The following state machine diagram describes TDS 4.2 on the server side.

78 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Figure 8: TDS 4.2 server state machine

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The organization is provided to explain how the protocol

behaves. This document does not mandate that implementations adhere to this model as long as their
external behavior is consistent with what is described in this document.

3.3.2 Timers

The TDS 4.2 protocol does not regulate any timer on a data stream. The TDS 4.2 server can
implement a timer on any message.

79 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

3.3.3 Initialization

The server MUST establish a listening endpoint based on one of the transport protocols described in
section 2.1. The server can establish additional listening endpoints.

When a client makes a connection request, the transport layer listening endpoint initializes all
resources required for this connection. The server is ready to receive a pre-login message.

3.3.4 Higher-Layer Triggered Events

A higher layer SHOULD terminate a TDS 4.2 connection when it needs to. When this happens, the

server MUST terminate the connection and recycle all resources for this connection. No response is
sent to the client.

3.3.5 Message Processing Events and Sequencing Rules

The processing of messages received from a TDS 4.2 client depends on the message type and the

state the TDS 4.2 server is in. The message type is determined from the TDS 4.2 packet type and the
token stream inside the TDS 4.2 packet payload, as described in section 2.2. The rest of this section
describes message processing and the possible actions that can be taken on messages.

The corresponding action will be taken when the server is in the following states.

3.3.5.1 Initial State

The TDS 4.2 server receives the first packet from the client. The packet SHOULD be a PRELOGIN
packet to set up context for login. A pre-login message is indicated by the PRELOGIN (0x12) message
type. The TDS 4.2 server SHOULD close the underlying transport connection, indicate an error to the
upper layer, and enter the final state if the first packet is not a structurally correct PRELOGIN packet.

For instance, the PRELOGIN packet will not contain the client version as the first option token.
Otherwise, the TDS 4.2 server MUST do one of the following:

 Return to the client a PRELOGIN structure wrapped in a table response (0x04) packet with
Encryption and enter the TLS/SSL Negotiation state if encryption is negotiated.

 Return to the client a PRELOGIN structure wrapped in a table response (0x04) packet without
Encryption and enter the unencrypted Login Ready state if encryption is not negotiated.

3.3.5.2 TLS/SSL Negotiation

If the next packet from the TDS 4.2 client is not a TLS/SSL negotiation packet or if the packet is not
structurally correct, the TDS 4.2 server MUST close the underlying transport connection, indicate an
error to the upper layer, and then enter the final state. A TLS/SSL negotiation packet is a PRELOGIN
(0x12) packet header encapsulated with TLS/SSL payload. The TDS 4.2 server MUST exchange a

TLS/SSL negotiation packet with the client and reenter this state until the TLS/SSL negotiation is
successfully completed. Upon successful negotiation, the TDS 4.2 server enters the Login Ready state.

3.3.5.3 Login Ready

Depending on the type of packet received, the server MUST take one of the following actions:

 If a valid LOGIN packet with standard login is received, the TDS 4.2 server MUST respond to the
TDS 4.2 client with a LOGINACK (0xAD), indicating that the login succeeded. The TDS 4.2 server
MUST enter the Logged In state.

80 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 If a valid LOGIN packet is received and integrated authentication is required by the TDS 4.2 client,
the TDS 4.2 server MUST respond with an SSPI message containing the SSPI signature of the

TDS 4.2 client and enter the SPNEGO Negotiation state.

 If a LOGIN packet with a standard login packet is received, but the login is invalid, the TDS 4.2

server MUST send an ERROR packet to the client. The TDS 4.2 server MUST close the underlying
transport connection, indicate an error to the upper layer, and enter the final state.

 If the packet received is not a structurally valid LOGIN packet, the TDS 4.2 server will not send
any response to the client. The TDS 4.2 server MUST close the underlying transport connection,
indicate an error to the upper layer, and enter the final state.

3.3.5.4 SPNEGO Negotiation

This state is used to negotiate the security scheme between the client and server. The TDS 4.2 server
processes the packet received according to the following rules:

 If the packet received is a structurally valid SPNEGO negotiation packet, the TDS 4.2 server

delegates processing of the security token embedded in the packet to the SPNEGO layer. (For

more information about SPNEGO, see [RFC4178].) The SPNEGO layer responds with one of three
results, and the TDS 4.2 server continues processing according to the response as follows:

 Complete: The TDS 4.2 server then sends the security token to the upper layer (typically a
database server) for authorization. If the upper layer approves the security token, the TDS 4.2
server sends a LOGINACK message to the client and immediately enters the Logged In state.
If the upper layer rejects the security token, then a Login failed ERROR token is sent back to
the client, the TDS 4.2 server closes the connection, and the TDS 4.2 server enters the final

state.

 Continue: The TDS 4.2 server sends a SPNEGO negotiation response to the client, embedding
the new security token returned by SPNEGO as part of the Continue response. (For more
information about SPNEGO, see [RFC4178].) The server then waits for a message from the
client and reenters the SPNEGO negotiation state when such a packet is received.

 Error: The server then MUST close the underlying transport connection, indicate an error to

the upper layer, and enter the final state.

 If the packet received is not a structurally valid SPNEGO negotiation packet, the TDS 4.2 server
will send no response to the client. The TDS 4.2 server MUST close the underlying transport
connection, indicate an error to the upper layer, and enter the final state. (For more information
about SPNEGO, see [RFC4178].)

3.3.5.5 Logged In

If a TDS 4.2 message of type 1, 3, 7, or 14 (see section 2.2.3.1.1) arrives, the TDS 4.2 server begins
processing by raising an event to the upper layer containing the data of the client request and by
entering the Client Request Execution state. If any other TDS 4.2 types arrive, the server MUST close
the underlying transport connection and enter the final state.

The server MUST also enter the final state if the client closes the underlying transport connection or if

the upper layer requests the TDS layer to close the connection. In this case, no response is sent to the
client.

3.3.5.6 Client Request Execution

The TDS 4.2 server MUST continue to listen for messages from the client while awaiting notification of
client request for completion from the upper layer. The TDS 4.2 server MUST also do one of the
following:

https://go.microsoft.com/fwlink/?LinkId=90461

81 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 If the upper layer notifies the TDS 4.2 server that the client request has finished successfully, the
TDS 4.2 server MUST send the results to the TDS 4.2 client and enter the Logged In state.

 If the upper layer notifies TDS 4.2 that an error has been encountered during the client request,
the TDS 4.2 server MUST send an ERROR message to the TDS 4.2 client and enter the Logged In

state.

 If an Attention packet is received during the execution of the current client request, it MUST
deliver a cancel indication to the upper layer. If an Attention packet is received after the execution
of the current client request, it MUST NOT deliver a cancel indication to the upper layer, because
there is no existing execution to cancel. Instead, the TDS 4.2 server MUST send an attention
acknowledgment to the TDS 4.2 client and enter the Logged In state.

 If another client request packet is received during the execution of the current client request, the

TDS 4.2 server SHOULD queue the new client request, and continue processing the client request
already in progress according to the preceding rules. When this operation is complete, the TDS 4.2
server reenters the Client Request Execution state and processes the newly arrived message.

3.3.5.7 Final State

The connection is disconnected. All resources for this connection are recycled by the TDS 4.2 server.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

When there is a failure in under-layers, the server SHOULD terminate the TDS 4.2 session without
sending any response to the client. An under-layer failure could be triggered by network failure. It can

also be triggered by the termination action from the client, which could be communicated to the
server stack by under-layers.

82 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the TDS 4.2 protocol. For each example, the binary TDS 4.2 message is provided, followed
by the decomposition displayed in XML.

4.1 Pre-Login Request

The following is an example of the pre-login request that is sent from the client to the server.

 12 01 00 34 00 00 01 00 00 00 15 00 06 01 00 1B
 00 01 02 00 1C 00 0C 03 00 28 00 04 FF 08 00 01
 55 00 00 00 4D 53 53 51 4C 53 65 72 76 65 72 00
 80 19 00 00

 <PacketHeader>
 <Type>
 <BYTE>12 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>34 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <Prelogin>
 <TokenType>
 <BYTE>00 </BYTE>
 </TokenType>
 <TokenPosition>
 <USHORT>00 15</USHORT>
 </TokenPosition>
 <TokenLeng>
 <USHORT>00 06</USHORT>
 </TokenLeng>
 <TokenType>
 <BYTE>01 </BYTE>
 </TokenType>
 <TokenPosition>
 <USHORT>00 1B</USHORT>
 </TokenPosition>
 <TokenLeng>
 <USHORT>00 01</USHORT>
 </TokenLeng>
 <TokenType>
 <BYTE>02 </BYTE>
 </TokenType>
 <TokenPosition>
 <USHORT>00 1C</USHORT>
 </TokenPosition>
 <TokenLeng>
 <USHORT>00 0C</USHORT>

83 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 </TokenLeng>
 <TokenType>
 <BYTE>03 </BYTE>
 </TokenType>
 <TokenPosition>
 <USHORT>00 28</USHORT>
 </TokenPosition>
 <TokenLeng>
 <USHORT>00 04</USHORT>
 </TokenLeng>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <PreloginData>
 <BYTES>08 00 01 55 00 00 00 4D 53 53 51 4C 53 65 72
 76 65 72 00 80 19 00 00</BYTE>
 </PreloginData>
 </Prelogin>
 </PacketData>

4.2 Login Request

The following is an example of the login request that is sent from the client to the server in two
packets.

The following information is included in the first packet.

 02 00 02 00 00 00 01 00 53 51 4C 50 4F 44 30 36
 38 2D 30 35 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 0C 73 61 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 03 01 06 0A 09 01 01 00 00 00 00 00
 00 00 00 00 4F 53 51 4C 2D 33 32 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 04 02 00 00 4D 53 44 42 4C 49 42 00 00 00
 07 06 00 00 00 00 0D 11 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The following information is included in the second packet.

 02 01 00 47 00 00 01 00 00 00 00 00 00 00 00 01

84 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 35 31 32
 00 00 00 03 00 00 00

 <PacketHeader>
 <Type>
 <BYTE>02 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>02 </BYTE>
 <BYTE>3F </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <Login>
 <HostName>
 <BYTES>53 51 4C 50 4F 44 30 36 38 2D 30 35 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>
 </HostName>
 <cbHostName>
 <BYTE>0C </BYTE>
 </cbHostName>
 <UserName>
 <BYTES>73 61 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>
 </UserName>
 <cbUserName>
 <BYTE>02 </BYTE>
 </cbUserName>
 <Password>
 <BYTES>59 75 6B 6F 6E 39 30 30 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>
 </Password>
 <cbPassword>
 <BYTE>08 </BYTE>
 </cbPassword>
 <HostProc>
 <BYTES>00 00 00 00 00 00 00 00 </BYTES>
 </HostProc>
 <FRESERVEDBYTE>
 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 </BYTES>
 </FRESERVEDBYTE>
 <AppType>
 <BYTES>00 00 00 00 00 00 </BYTES>
 </AppType>
 <cbHostProc>
 <BYTE>00 </BYTE>
 </cbHostProc>
 <lInt2>
 <BYTE>03 </BYTE>
 </lInt2>
 <lInt4>
 <BYTE>01 </BYTE>
 </lInt4>

85 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 <lChar>
 <BYTE>06 </BYTE>
 </lChar>
 <lFloat>
 <BYTE>0A </BYTE>
 </lfloat>
 <FRESERVEDBYTE>
 <BYTE>09 </BYTE>
 </FRESERVEDBYTE>
 <lUseDb>
 <BYTE>01 </BYTE>
 </lUseDb>
 <lDumpLoad>
 <BYTE>01 </BYTE>
 </lDumpLoad>
 <lInterface>
 <BYTE>00 </BYTE>
 </lInterface>
 <lType>
 <BYTE>00 </BYTE>
 </lType>
 <FRESERVEDBYTE>
 <BYTES>00 00 00 00 00 00 </BYTES>
 </FRESERVEDBYTE>
 <lDBLIBFlags>
 <BYTE>00 </BYTE>
 </lDBLIBFlags>
 <AppName>
 <BYTES>4F 53 51 4C 2D 33 32 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>
 </AppName>
 <cbAppName>
 <BYTE>07 </BYTE>
 </cbAppName>
 <ServerName>
 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>
 </ServerName>
 <cbServerName>
 <BYTE>00 </BYTE>
 </cbServerName>
 <RemotePassword>
 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00 </BYTES>
 </RemotePassword>
 <cbRemotePassword>
 <BYTE>00 </BYTE>
 </cbRemotePassword>
 <TDSVersion>
 <BYTES>04 02 00 00 </BYTES>
 </TDSVersion>
 <ProgName>
 <BYTES>4D 53 44 42 4C 49 42 00 00 00 </BYTES>
 </ProgName>
 <cbProgName>
 <BYTE>07 </BYTE>
 </cbProgName>
 <ProgVersion>

86 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 <BYTES>06 00 00 00 </BYTES>
 </ProgVersion>
 <FRESERVEDBYTE>
 <BYTE>00 </BYTE>
 </FRESERVEDBYTE>
 <lFloat4>
 <BYTE>0D </BYTE>
 </lFloat4>
 <lDate4>
 <BYTE>11 </BYTE>
 </lDate4>
 <Language>
 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>
 <cbLanguage>
 <BYTE>00 </BYTE>
 </cbLanguage>
 </Language>
 <SetLang>
 <BYTE>01 </BYTE>
 </SetLang>
 <FRESERVEDBYTES>
 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00
 00 00 00 00 00 00 00 00 00 00 </BYTES>
 </FRESERVEDBYTES>
 <PacketSize>
 <BYTES>35 31 32 00 00 00 </BYTES>
 </PacketSize>
 <cbPacketSize>
 <BYTE>03 </BYTE>
 </cbPacketSize>
 <Padding>
 <BYTES>00 00 00 </BYTES>
 </Padding>
 </Login>
 </PacketData>

4.3 Login Response

The following is an example of the login response that is sent from the server to the client.

 04 01 00 E8 00 34 01 00 E3 0F 00 01 06 6D 61 73
 74 65 72 06 6D 61 73 74 65 72 AB 39 00 45 16 00
 00 02 00 25 00 43 68 61 6E 67 65 64 20 64 61 74
 61 62 61 73 65 20 63 6F 6E 74 65 78 74 20 74 6F
 20 27 6D 61 73 74 65 72 27 2E 08 41 42 43 44 45
 46 47 31 00 01 00 E3 0D 00 02 0A 75 73 5F 65 6E
 67 6C 69 73 68 00 AB 3B 00 47 16 00 00 01 00 27
 00 43 68 61 6E 67 65 64 20 6C 61 6E 67 75 61 67
 65 20 73 65 74 74 69 6E 67 20 74 6F 20 75 73 5F
 65 6E 67 6C 69 73 68 2E 08 41 42 43 44 45 46 47
 31 00 01 00 E3 09 00 03 05 69 73 6F 5F 31 01 00
 AD 20 00 01 04 02 00 00 16 4D 69 63 72 6F 73 6F
 66 74 20 53 51 4C 20 53 65 72 76 65 72 00 00 5F
 0A 00 FF E3 09 00 04 03 35 31 32 03 35 31 32 FD

 <PacketHeader >
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>

87 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 <BYTE>E8 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader >
 <PacketData>
 <TableResponse>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>0F 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>01 06 6D 61 73 74 65 72 06 6D 61 73 74
 65 72 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <INFO>
 <TokenType>
 <BYTE>AB </BYTE>
 </TokenType>
 <Length>
 <USHORT>39 00 </USHORT>
 </Length>
 <Number>
 <LONG>45 16 00 00 </LONG>
 </Number>
 <State>
 <BYTE>02 </BYTE>
 </State>
 <Class>
 <BYTE>00 </BYTE>
 </Class>
 <MsgText>
 <US_VARCHAR>
 <USHORT>25 00 </USHORT>
 <BYTES ascii="Changed database context to
 'master'.">43 68 61 6E 67 65 64 20 64 61 74 61 62 61 73
 65 20 63 6F 6E 74 65 78 74 20 74 6F 20 27 6D 61 73 74 65
 72 27 2E </BYTES>
 </US_VARCHAR>
 </MsgText>
 <ServerName>
 <B_VARCHAR>
 <BYTE>08 </BYTE>
 <BYTES ascii="ABCDEFG1">41 42 43 44 45 46 47 31 </BYTES>
 </B_VARCHAR>
 </ServerName>
 <ProcName>
 <B_VARCHAR>
 <BYTE>00 </BYTE>
 <BYTES ascii="">
 </BYTES>
 </B_VARCHAR>
 </ProcName>
 <LineNumber>
 <USHORT>01 00 </USHORT>
 </LineNumber>
 </INFO>

88 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>0D 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>02 0A 75 73 5F 65 6E 67 6C 69 73 68 00 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <INFO>
 <TokenType>
 <BYTE>AB </BYTE>
 </TokenType>
 <Length>
 <USHORT>3B 00 </USHORT>
 </Length>
 <Number>
 <LONG>47 16 00 00 </LONG>
 </Number>
 <State>
 <BYTE>01 </BYTE>
 </State>
 <Class>
 <BYTE>00 </BYTE>
 </Class>
 <MsgText>
 <US_VARCHAR>
 <USHORT>27 00 </USHORT>
 <BYTES ascii="Changed language setting to
 us_english.">43 68 61 6E 67 65 64 20 6C 61 6E 67 75 61
 67 65 20 73 65 74 74 69 6E 67 20 74 6F 20 75 73 5F 65 6E
 67 6C 69 73 68 2E </BYTES>
 </US_VARCHAR>
 </MsgText>
 <ServerName>
 <B_VARCHAR>
 <BYTE>08 </BYTE>
 <BYTES ascii="ABCDEFG1">41 42 43 44 45 46 47 31 </BYTES>
 </B_VARCHAR>
 </ServerName>
 <ProcName>
 <B_VARCHAR>
 <BYTE>00 </BYTE>
 <BYTES ascii="">
 </BYTES>
 </B_VARCHAR>
 </ProcName>
 <LineNumber>
 <USHORT>01 00 </USHORT>
 </LineNumber>
 </INFO>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>09 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>03 05 69 73 6F 5F 31 01 00 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <LOGINACK>
 <TokenType>
 <BYTE>AD </BYTE>
 </TokenType>
 <Length>

89 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 <USHORT>20 00 </USHORT>
 </Length>
 <Interface>
 <BYTE>01 </BYTE>
 </Interface>
 <TDSVersion>
 <DWORD>04 02 00 00 </DWORD>
 </TDSVersion>
 <ProgName>
 <B_VARCHAR>
 <BYTE>16 </BYTE>
 <BYTES ascii="Microsoft SQL Server..">4D 69 63 72
 6F 73 6F 66 74 20 53 51 4C 20 53 65 72 76 65 72 00 00 </BYTES>
 </B_VARCHAR>
 </ProgName>
 <ProgVersion>
 <DWORD>00 00 00 00 </DWORD>
 </ProgVersion>
 </LOGINACK>
 <ENVCHANGE>
 <TokenType>
 <BYTE>E3 </BYTE>
 </TokenType>
 <Length>
 <USHORT>09 00 </USHORT>
 </Length>
 <EnvChangeData>
 <BYTES>04 03 35 31 32 03 35 31 32 </BYTES>
 </EnvChangeData>
 </ENVCHANGE>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>00 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>00 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONG>00 00 00 00 </LONG>
 </DoneRowCount>
 </DONE>
 </TableResponse>
 </PacketData>

4.4 SQL Batch Client Request

The following is an example of the client request that is sent from the client to the server.

 01 01 00 1E 00 00 01 00 73 65 6C 65 63 74 20 63
 6F 6C 31 20 66 72 6F 6D 20 66 6F 6F 0D 0A

 <PacketHeader>
 <Type>
 <BYTE>01 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>1E </BYTE>
 </Length>
 <SPID>

90 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <SQLBatch>
 <SQLText>
 <BYTESTREAM>
 <BYTES>
 73 65 6C 65 63 74 20 63 6F 6C 31 20 66 72 6F 6D 20 66 6F 6F 0D 0A </BYTES>
 </BYTESTREAM>
 </SQLText>
 </SQLBatch>
 </PacketData>

4.5 SQL Batch Server Response

The following is an example of the server response that is sent from the server to the client.

 04 01 00 26 00 33 01 00 A0 05 00 04 63 6F 6C 31
 A1 05 00 07 00 08 00 38 D1 01 00 00 00 FD 10 00
 C1 00 01 00 00 00
 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>26 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <COLNAME>
 <TokenType>
 <BYTE>A0 </BYTE>
 </TokenType>
 <Length>
 <USHORT>05 00 </USHORT>
 </Length>
 <ColName>
 <B_VARCHAR>
 <BYTE>04 </BYTE>
 <BYTES ascii="col1">63 6F 6C 31 </BYTES>
 </B_VARCHAR>
 </ColName>

91 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 </COLNAME>
 <COLFMT>
 <TokenType>
 <BYTE>A1 </BYTE>
 </TokenType>
 <Length>
 <USHORT>05 00 </USHORT>
 </Length>
 <ColumnData>
 <UserType>
 <USHORT>07 00 </USHORT>
 </UserType>
 <Flags>
 <USHORT>08 00 </USHORT>
 </Flags>
 <TYPE_INFO>
 <FIXEDLENTYPE>
 <BYTE>38 </BYTE>
 </FIXEDLENTYPE>
 </TYPE_INFO>
 </ColumnData>
 </COLFMT>
 <ROW>
 <TokenType>
 <BYTE>D1 </BYTE>
 </TokenType>
 <TYPE_VARBYTE>
 <BYTES>01 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 </ROW>
 <DONE>
 <TokenType>
 <BYTE>FD </BYTE>
 </TokenType>
 <Status>
 <USHORT>10 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONG>01 00 00 00 </LONG>
 </DoneRowCount>
 </DONE>
 </TableResponse>
 </PacketData>

4.6 RPC Client Request

The following is an example of the RPC request that is sent from the client to the server.

 03 01 00 24 00 00 01 00 0A 70 5F 61 6C 6C 74 79
 70 65 73 00 00 0A 40 62 69 67 69 6E 74 63 6F 6C
 00 34 01 00
 <PacketHeader>
 <Type>
 <BYTE>03 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>24 </BYTE>
 </Length>
 <SPID>

92 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <RPCRequest>
 <RPCReqBatch>
 <NameLenProcID>
 <ProcName>
 <B_VARCHAR>
 <BYTE>0A </BYTE>
 <BYTES ascii="p_alltypes">70 5F 61 6C 6C 74 79 70 65 73 </BYTES>
 </B_VARCHAR>
 </ProcName>
 </NameLenProcID>
 <OptionFlags>
 <fWithRecomp>
 <BIT>false</BIT>
 </fWithRecomp>
 <fNoMetaData>
 <BIT>false</BIT>
 </fNoMetaData>
 </OptionFlags>
 <ParameterData>
 <ParamMetaData>
 <B_VARCHAR>
 <BYTE>0A </BYTE>
 <BYTES ascii="@bigintcol">40 62 69 67 69 6E 74 63 6F 6C </BYTES>
 </B_VARCHAR>
 <StatusFlags>
 <fByRefValue>
 <BIT>false</BIT>
 </fByRefValue>
 <fDefaultValue>
 <BIT>false</BIT>
 </fDefaultValue>
 <fCookie>
 <BIT>false</BIT>
 </fCookie>
 </StatusFlags>
 <TYPE_INFO>
 <FIXEDLENTYPE>
 <BYTE>34 </BYTE>
 </FIXEDLENTYPE>
 </TYPE_INFO>
 </ParamMetaData>
 <ParamLenData>
 <TYPE_VARBYTE>
 <BYTES>01 00 </BYTES>
 </TYPE_VARBYTE>
 </ParamLenData>
 </ParameterData>
 </RPCReqBatch>
 </RPCRequest>
 </PacketData>

4.7 RPC Server Response

The following is an example of the RPC response that is sent from the server to the client.

93 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 04 01 00 1F 00 35 01 00 FF 11 00 C1 00 01 00 00
 00 79 00 00 00 00 FE 00 00 E0 00 00 00 00 00

 <PacketHeader>
 <Type>
 <BYTE>04 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>1F </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TableResponse>
 <DONEINPROC>
 <TokenType>
 <BYTE>FF </BYTE>
 </TokenType>
 <Status>
 <USHORT>11 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>C1 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONG>01 00 00 00 </LONG>
 </DoneRowCount>
 </DONEINPROC>
 <RETURNSTATUS>
 <TokenType>
 <BYTE>79 </BYTE>
 </TokenType>
 <VALUE>
 <LONG>00 00 00 00 </LONG>
 </VALUE>
 </RETURNSTATUS>
 <DONEPROC>
 <TokenType>
 <BYTE>FE </BYTE>
 </TokenType>
 <Status>
 <USHORT>00 00 </USHORT>
 </Status>
 <CurCmd>
 <USHORT>E0 00 </USHORT>
 </CurCmd>
 <DoneRowCount>
 <LONG>00 00 00 00 </LONG>
 </DoneRowCount>
 </DONEPROC>
 </TableResponse>
 </PacketData>

94 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

4.8 Attention Request

The following is an example of the Attention request that is sent from the client to the server.

 06 01 00 08 00 00 01 00

 <PacketHeader>
 <Type>
 <BYTE>06</BYTE>
 </Type>
 <Status>
 <BYTE>01</BYTE>
 </Status>
 <Length>
 <BYTE>00</BYTE>
 <BYTE>08</BYTE>
 </Length>
 <SPID>
 <BYTE>00</BYTE>
 <BYTE>00</BYTE>
 </SPID>
 <Packet>
 <BYTE>01</BYTE>
 </Packet>
 <Window>
 <BYTE>00</BYTE>
 </Window>
 </PacketHeader>

4.9 SSPI Message

The following is an example of the SSPI message carrying the SSPI payload that is sent from the
client to the server.

 11 01 00 3F 00 00 04 00 4E 54 4C 4D 53 53 50 00
 01 00 00 00 97 B2 08 E2 07 00 07 00 30 00 00 00
 08 00 08 00 28 00 00 00 06 00 71 17 00 00 00 0F
 58 49 4E 57 45 49 48 32 52 45 44 4D 4F 4E 44

 <PacketHeader>
 <Type>
 <BYTE>11 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>3F </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>04 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <SSPI>
 <BYTES>
 4E 54 4C 4D 53 53 50 00 01 00 00 00 97 B2 08 E2 07 00 07 00

95 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 30 00 00 00 08 00 08 00 28 00 00 00 06 00 71 17 00 00 00 0F
 58 49 4E 57 45 49 48 32 52 45 44 4D 4F 4E 44</BYTES>
 </SSPI>
 </PacketData>

4.10 Bulk Load

The following is an example of the BULKLOADBCP request that is sent from the client to the server.

 07 01 00 21 00 00 01 00 17 00 01 00 0F 00 00 00
 00 00 00 00 00 00 00 17 00 65 62 63 64 65 02 14
 0F

 <PacketHeader>
 <Type>
 <BYTE>07 </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>21 </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <BulkLoadBCP>
 <RowData>
 <Length>
 <USHORT>17 00 </USHORT>
 </Length>
 <ColData>
 <NumVarCols>
 <BYTE>01 </BYTE>
 </NumVarCols>
 <RowNum>
 <BYTE>00 </BYTE>
 </RowNum>
 <FixedColData>
 <TYPE_VARBYTE>
 <BYTES>0F 00 00 00 </BYTES>
 </TYPE_VARBYTE>
 </FixedColData>
 <Paddings>
 <BYTES>00 00 00 00 00 00 00</BYTES>
 </Paddings>
 <RowLen>
 <USHORT>17 00 </USHORT>
 </RowLen>
 <VarColData>
 <BYTES>65 62 63 64 65 </BYTES>
 </VarColData>
 <Adjust>
 <BYTES>02 </BYTES>
 </Adjust>
 <Offset>

96 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 <BYTES>14 0F </BYTES>
 </Offset>
 </ColData>
 </RowData>
 </BulkLoadBCP>
 </PacketData>

4.11 Transaction Manager Request

The following is an example of the transaction manager request that is sent from the client to the
server.

 0E 01 00 0C 00 00 01 00 00 00 00 00

 <PacketHeader>
 <Type>
 <BYTE>0E </BYTE>
 </Type>
 <Status>
 <BYTE>01 </BYTE>
 </Status>
 <Length>
 <BYTE>00 </BYTE>
 <BYTE>0C </BYTE>
 </Length>
 <SPID>
 <BYTE>00 </BYTE>
 <BYTE>00 </BYTE>
 </SPID>
 <Packet>
 <BYTE>01 </BYTE>
 </Packet>
 <Window>
 <BYTE>00 </BYTE>
 </Window>
 </PacketHeader>
 <PacketData>
 <TransMgrReq>
 <RequestType>
 <USHORT>00 00 </USHORT>
 </RequestType>
 <RequestPayload>
 <TM_GET_DTC_ADDRESS>
 <US_VARBYTE>
 <USHORT>00 00 </USHORT>
 <BYTES></BYTES>
 </US_VARBYTE>
 </TM_GET_DTC_ADDRESS>
 </RequestPayload>
 </TransMgrReq>
 </PacketData>

97 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

5 Security

5.1 Security Considerations for Implementers

As previously described in this document, the TDS 4.2 protocol provides facilities for authentication

and channel encryption negotiation. If SSPI authentication is requested by the client application, the
exact choice of security mechanisms is determined by the SSPI layer. Likewise, although the decision
as to whether channel encryption is to be used is negotiated in the TDS 4.2 layer, the exact choice of
cipher suite is negotiated by the TLS/SSL layer.

5.2 Index of Security Parameters

Security parameter Section

TLS Negotiation 2.2.6.4 PRELOGIN message

3.2.5.1 Sent Initial PRELOGIN Packet State (Client)

3.2.5.2 Sent TLS/SSL Negotiation Packet State (Client)

3.3.5.2 TLS/SSL Negotiation (Server)

SSPI Authentication 2.2.6.7 SSPI message

3.2.5.4 Sent SSPI Record with SPNEGO Packet Size

3.3.5.4 SPNEGO Negotiation

SQL Authentication 2.2.6.3 LOGIN message

3.3.5.3 Login Ready (Server)

98 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Microsoft SQL Server 6.5

 Microsoft SQL Server 7.0

 Microsoft SQL Server 2000

 Microsoft SQL Server 2005

 Microsoft SQL Server 2008

 Microsoft SQL Server 2008 R2

 Microsoft SQL Server 2012

 Microsoft SQL Server 2014

 Microsoft SQL Server 2016

 Microsoft SQL Server 2017

 Microsoft SQL Server 2019

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 2.1: For more information about Microsoft-specific implementations, see [MSDN-
NamedPipes].

<2> Section 2.2.2.6: If a stored procedure executes one or more other stored procedures, a
DONEPROC token data stream signals the completion of each stored procedure. When executing SQL

statements as a result of a trigger event, the completion of each of the SQL statements inside the
trigger is indicated by a DONEINPROC token data stream.

<3> Section 2.2.6.7: The SSPI signature for DBLIB that is recognized by SQL Server is "d5bf8d50-
451e-11d1-968d-e4b783000000". The SSPI token contains US_VARBYTE, that is, the length of the
string followed by the string itself.

<4> Section 2.2.7.5: The usUpdateable flag is not implemented in SQL Server.

<5> Section 2.2.7.7: The 0x4: DONE_INXACT bit is not set by SQL Server, and is considered reserved
for future use.

<6> Section 2.2.7.8: The 0x4: DONE_INXACT bit is not set by SQL Server, and is considered reserved
for future use.

<7> Section 2.2.7.9: The 0x4: DONE_INXACT bit is not set by SQL Server, and is considered reserved
for future use.

<8> Section 2.2.7.11: Numbers less than 20001 are reserved by SQL Server.

https://go.microsoft.com/fwlink/?LinkId=127839
https://go.microsoft.com/fwlink/?LinkId=127839

99 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

<9> Section 2.2.7.11: SQL Server does not raise system errors with severities of 0 through 9.

<10> Section 2.2.7.11: For compatibility reasons, SQL Server converts severity 10 to severity 0

before returning the error information to the calling application.

<11> Section 2.2.7.12: Numbers less than 20001 are reserved by SQL Server.

<12> Section 2.2.7.17: The usUpdateable flag is not implemented in SQL Server.

100 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

6 Appendix A: Product Behavior Added SQL Server 2019 to the product applicability list. Major

mailto:dochelp@microsoft.com

101 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

8 Index

A

Abstract data model
 client 72
 common details 67
 server 78
Applicability 11
Attention message 14
Attention request 94
Attention signal
 out-of-band 22
Attention tokens 21

B

Bulk Load BCP 31
Bulk load update text/write text 33

C

Capability negotiation 12
Change tracking 100
Client
 abstract data model 72
 higher-layer triggered events 73
 initialization 73
 message processing 74
 other local events 77
 overview (section 3.1 67, section 3.2 72)
 sequencing rules 74
 timer events 77
 timers 73
Client Messages message 13
Client request execution 80

D

Data buffer stream tokens 30
Data model - abstract
 client 72
 server 78
Data streams
 data-type-dependent 26
 unknown-length 25
 variable-length 25
Data type definitions 26
Data types
 fixed-length 26
 variable-length 27
Data-type-dependent data streams 26
Directory service schema elements 66

DONE and Attention tokens 21
DONE tokens 21

E

Elements - directory service schema 66
Error messages 16
Example
 Attention request 94
 login request 83

 login response 86
 pre-login request 82
 RPC client request 91
 RPC server response 92
 SQL batch client request 89
 SQL batch server response 90
 SQL command with binary data 95
 SSPI message 94
 transaction manager request 96
Examples
 protocol 82
 token stream 22

F

Fields - vendor-extensible 12
Final state (section 3.2.5.8 77, section 3.3.5.7 81)
Fixed-length data types 26
Fixed-length token 20

G

Glossary 7
Grammar definition
 general rules 23
Grammar Definition for Token Description message

23

H

Higher-layer triggered events
 client 73
 common details 67
 server 79

I

Implementer - security considerations 97
Index of security parameters 97
Info messages 16
Informative references 9
Initial state 79
Initialization
 client 73
 server 79
Introduction 7

L

Logged in 80
Logged In state 76
LOGIN 33
Login ready 79
Login request 83
Login response 86

M

Message
 pre-login 13
Message processing

102 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

 client 74
 server 79
Message processing events and sequencing rules
 common details 67
Message syntax 13
Messages
 Client Messages 13
 Grammar Definition for Token Description 23
 Packet Data Token and Tokenless Data Streams 19
 Packet Data Token Stream Definition 43
 Packets 16
 Server Messages 15
 transport 13

N

Normative references 8

O

Other local events
 client 77
 common details 71
 server 81
Out-of-band attention signal 22
Overview (synopsis) 9

P

Packet data 19
Packet Data Token and Tokenless Data Streams

message 19
Packet data token stream definition
 ALTFMT 43
 ALTNAME 45
 ALTROW 46
 COLFMT 48
 COLINFO 47
 COLNAME 50
 DONE 50
 DONEINPROC 52
 DONEPROC 53
 ENVCHANGE 54
 ERROR 55
 INFO 58
 LOGINACK 59
 OFFSET 60
 ORDER 61
 RETURNSTATUS 62
 RETURNVALUE 62
 ROW 64

 SSPI 65
 TABNAME 66
Packet Data Token Stream Definition message 43
Packet header
 length 18
 overview 17
 PacketID 19
 SPID 18
 status 18
 type 17
 window 19
Packets message 16
Parameters - security index 97
Preconditions 11

PRELOGIN 37
Pre-login message 13
Pre-login request 82
Prerequisites 11
Product behavior 98
Protocol Details
 overview 67
Protocol examples 82

R

References 8
 informative 9
 normative 8
Relationship to other protocols 11
Remote procedure call 14
Return status 16

Row data 15
RPC client request 91
RPC request 39
RPC server response 92

S

Schema elements - directory service 66
Security
 implementer considerations 97
 parameter index 97
Security overview 97
Sending an SQL batch 22
Sent Attention state 77
Sent Client Request state 76
Sent Initial PRELOGIN Packet state 75
Sent LOGIN Record state 76
Sent SSPI Record with SPNEGO Packet state 76
Sent TLS/SSL Negotiation Packet state 75
Sequencing rules
 client 74
 server 79
Server
 abstract data model 78
 higher-layer triggered events 79
 initialization 79
 message processing 79
 other local events 81
 overview (section 3.1 67, section 3.3 77)
 sequencing rules 79
 timer events 81
 timers 78
Server Messages message 15
SPNEGO negotiation 80
SQL Batch
 sending 22
SQL batch client request 89
SQL batch server response 90
SQL command with binary data (section 2.2.1.4 14,

section 4.10 95)

SQLBatch 41
SSPI message (section 2.2.6.7 41, section 4.9 94)
Standards assignments 12
SWL command 14
Syntax
 message 13

T

103 / 103

[MS-SSTDS] - v20191016
Tabular Data Stream Protocol Version 4.2
Copyright © 2019 Microsoft Corporation
Release: October 16, 2019

Timer events
 client 77
 common details 71
 server 81
Timers
 client 73
 common details 67
 server 78
TLS/SSL negotiation 79
Token
 fixed-length 20
 variable-length 21
 zero-length 20
Token data stream definition
 ALTFMT 43
 ALTNAME 45
 ALTROW 46
 COLFMT 48
 COLINFO 47
 COLNAME 50
 DONE 50
 DONEINPROC 52

 DONEPROC 53
 ENVCHANGE 54
 ERROR 55
 INFO 58
 LOGINACK 59
 OFFSET 60
 ORDER 61
 RETURNSTATUS 62
 RETURNVALUE 62
 ROW 64
 SSPI 65
 TABNAME 66
Token definition 20
Token description
 grammar definition 23
Token stream 20
Token stream examples 22
Tokenless data streams 19
Tokenless stream 20
Tracking changes 100
Transaction manager request (section 2.2.1.7 14,

section 2.2.6.8 42, section 4.11 96)
Transport 13
Triggered events - higher-layer
 client 73
 server 79
TYPE_INFO rule 30

U

Unknown-length data streams 25

V

Variable-length data streams 25
Variable-length data types 27
Variable-length token 21
Vendor-extensible fields 12
Versioning 12

W

Write text 33

Z

Zero-length token 20

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Client Messages
	2.2.1.1 Pre-Login
	2.2.1.2 Login
	2.2.1.3 SQL Batch
	2.2.1.4 Bulk Load
	2.2.1.5 Remote Procedure Call
	2.2.1.6 Attention
	2.2.1.7 Transaction Manager Request

	2.2.2 Server Messages
	2.2.2.1 Pre-Login Response
	2.2.2.2 Login Response
	2.2.2.3 Row Data
	2.2.2.4 Return Status
	2.2.2.5 Return Parameters
	2.2.2.6 Response Completion (DONE)
	2.2.2.7 Error and Info Messages
	2.2.2.8 Attention Acknowledgment

	2.2.3 Packets
	2.2.3.1 Packet Header
	2.2.3.1.1 Type
	2.2.3.1.2 Status
	2.2.3.1.3 Length
	2.2.3.1.4 SPID
	2.2.3.1.5 PacketID
	2.2.3.1.6 Window

	2.2.3.2 Packet Data

	2.2.4 Packet Data Token and Tokenless Data Streams
	2.2.4.1 Tokenless Stream
	2.2.4.2 Token Stream
	2.2.4.2.1 Token Definition
	2.2.4.2.1.1 Zero-Length Token (xx01xxxx)
	2.2.4.2.1.2 Fixed-Length Token (xx11xxxx)
	2.2.4.2.1.3 Variable-Length Token (xx10xxxx)

	2.2.4.3 DONE and Attention Tokens
	2.2.4.4 Token Stream Examples
	2.2.4.4.1 Sending a SQL Batch
	2.2.4.4.2 Out-of-Band Attention Signal

	2.2.5 Grammar Definition for Token Description
	2.2.5.1 General Rules
	2.2.5.1.1 Least Significant Bit Order

	2.2.5.2 Data Stream Types
	2.2.5.2.1 Unknown-Length Data Streams
	2.2.5.2.2 Variable-Length Data Streams
	2.2.5.2.3 Data-Type-Dependent Data Streams

	2.2.5.3 Data Type Definitions
	2.2.5.3.1 Fixed-Length Data Types
	2.2.5.3.2 Variable-Length Data Types

	2.2.5.4 Data Type Details
	2.2.5.4.1 System Data Type Values
	2.2.5.4.1.1 Integers
	2.2.5.4.1.2 Timestamp
	2.2.5.4.1.3 Character and Binary Strings
	2.2.5.4.1.4 Fixed-Point Numbers
	2.2.5.4.1.5 Floating-Point Numbers
	2.2.5.4.1.6 Decimal/Numeric
	2.2.5.4.1.7 GUID
	2.2.5.4.1.8 Date/Times

	2.2.5.5 Type Info Rule Definition
	2.2.5.6 Data Buffer Stream Tokens

	2.2.6 Packet Header Message Type Stream Definition
	2.2.6.1 Bulk Load BCP
	2.2.6.2 Bulk Load Update Text/Write Text
	2.2.6.3 LOGIN
	2.2.6.4 PRELOGIN
	2.2.6.5 RPC Request
	2.2.6.6 SQLBatch
	2.2.6.7 SSPI Message
	2.2.6.8 Transaction Manager Request

	2.2.7 Packet Data Token Stream Definition
	2.2.7.1 ALTFMT
	2.2.7.2 ALTNAME
	2.2.7.3 ALTROW
	2.2.7.4 COLINFO
	2.2.7.5 COLFMT
	2.2.7.6 COLNAME
	2.2.7.7 DONE
	2.2.7.8 DONEINPROC
	2.2.7.9 DONEPROC
	2.2.7.10 ENVCHANGE
	2.2.7.11 ERROR
	2.2.7.12 INFO
	2.2.7.13 LOGINACK
	2.2.7.14 OFFSET
	2.2.7.15 ORDER
	2.2.7.16 RETURNSTATUS
	2.2.7.17 RETURNVALUE
	2.2.7.18 ROW
	2.2.7.19 SSPI
	2.2.7.20 TABNAME

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Sent Initial PRELOGIN Packet State
	3.2.5.2 Sent TLS/SSL Negotiation Packet State
	3.2.5.3 Sent LOGIN Record State
	3.2.5.4 Sent SSPI Record with SPNEGO Packet State
	3.2.5.5 Logged In State
	3.2.5.6 Sent Client Request State
	3.2.5.7 Sent Attention State
	3.2.5.8 Final State

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Initial State
	3.3.5.2 TLS/SSL Negotiation
	3.3.5.3 Login Ready
	3.3.5.4 SPNEGO Negotiation
	3.3.5.5 Logged In
	3.3.5.6 Client Request Execution
	3.3.5.7 Final State

	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Pre-Login Request
	4.2 Login Request
	4.3 Login Response
	4.4 SQL Batch Client Request
	4.5 SQL Batch Server Response
	4.6 RPC Client Request
	4.7 RPC Server Response
	4.8 Attention Request
	4.9 SSPI Message
	4.10 Bulk Load
	4.11 Transaction Manager Request

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

